
CybersecurityLin et al. Cybersecurity (2021) 4:28
https://doi.org/10.1186/s42400-021-00087-5

RESEARCH Open Access

ICPFuzzer: proprietary communication
protocol fuzzing by using machine learning
and feedback strategies
Pei-Yi Lin, Chia-Wei Tien* , Ting-Chun Huang and Chin-Wei Tien

Abstract

The fuzzing test is able to discover various vulnerabilities and has more chances to hit the zero-day targets. And
ICS(Industrial control system) is currently facing huge security threats and requires security standards, like ISO 62443,
to ensure the quality of the device. However, some industrial proprietary communication protocols can be
customized and have complicated structures, the fuzzing system cannot quickly generate test data that adapt to
various protocols. It also struggles to define the mutation field without having prior knowledge of the protocols.
Therefore, we propose a fuzzing system named ICPFuzzer that uses LSTM(Long short-term memory) to learn the
features of a protocol and generates mutated test data automatically. We also use the responses of testing and adjust
the weight strategies to further test the device under testing (DUT) to find more data that cause unusual connection
status. We verified the effectiveness of the approach by comparing with the open-source and commercial fuzzers.
Furthermore, in a real case, we experimented with the DLMS/COSEM for a smart meter and found that the test data
can cause a unusual response. In summary, ICPFuzzer is a black-box fuzzing system that can automatically execute the
testing process and reveal vulnerabilities that interrupt and crash industrial control communication. Not only
improves the quality of ICS but also improves safety.

Keywords: Industrial communication protocol, Network protocol fuzzing, Long short-term memory (LSTM), Industrial
control system (ICS)

Introduction
With the promotion of Industry 4.0, the demand for a
device that can operate automatically has become increas-
ingly large. Not only do factory devices need to be auto-
mated to increase efficiency and reduce manual error
rates and labor costs but also the electrical and hydraulic
systems need to be automated. Industrial communication
systems (ICSs) (Poletykin 2018) occupy a very important
position inmodern automation systems. Supervisory con-
trol and data acquisition (SCADA) and the distributed
control system (DCS) are widely used to control and
monitor the production process, and local operations can

*Correspondence: emmily@iii.org.tw
Cybersecurity Technology Institute, Institute for Information Industry Taiwan,
China, No. 133, Sec. 4, Minsheng E. Rd., Songshan Dist. 105, Taipei City Taiwan,
China

receive instructions from a remote system; thus, the pro-
tocol that is used for dialogue becomes important (Su et
al. 2017).
If ICSs can be attacked through the communication

protocol (McLaughlin et al. 2016), it may lead to unsus-
tainable communication between the devices and cause
serious problems. One of the most famous attacks is
Trisis (Wikipedia contributors 2020a), a well-known mal-
ware that disrupted production processes and was able
to manipulate security systems. In addition, some devices
that were originally isolated from the network can now
also be connected externally to facilitate remote control or
query data. Many connection functions are not protected
by security measures (Nan et al. 2013), such as operating
the function without continuing to support or update it,
or the logical processing of the protocol is not completed,

© The Author(s). 2021Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

http://crossmark.crossref.org/dialog/?doi=10.1186/s42400-021-00087-5&domain=pdf
http://orcid.org/0000-0002-7829-7778
mailto: emmily@iii.org.tw
http://creativecommons.org/licenses/by/4.0/

Lin et al. Cybersecurity (2021) 4:28 Page 2 of 15

with even several pieces of content being transmitted in
plain text. In a factory, if a motor or robotic arm oper-
ates excessively, it may cause the motor to burn out and
damage the entire machine or even the factory.
A secure device requires many tests to ensure its secu-

rity and defensiveness, but the source code of software is
difficult to obtain, and the details of the hardware archi-
tecture are limited to professional knowledge. Therefore,
how to protect the security of communication with a
device in industry is a key matter. The fuzzing test (Liang
et al. 2018) is a kind of preliminary and uncomplicated
testing that can be performed on a system. A fuzzer sends
data with an abnormal format to the device (Shapiro et al.
2011) to find potential or known threats and assist users
in checking the tolerance of the DUT to the abnormal
data. The zero-day vulnerability (You et al. 2019) can also
be determined through the fuzzing test, serving as the
goalkeeper of the system. By sending content of different
formats to the device, a user can not only check whether
the logical processing inside the system is correct but also
perform the robustness test (Grubbs 2018) on the system
and test its ability to reply. This is a test that does not cause
much harm to the logical core of the system.
Many international testing standards mention the

importance of fuzzing tests, such as the Embedded
Device Security Assurance (EDSA) (GISA Security Com-
pliance Institute 2020). The security development life-
cycle (SDLC) defined by Microsoft (GMicrosoft 2020)
also indicates that performing the fuzzing test during the
verification phase is important; thus, the fuzzing test is
necessary. At present, there are many types of indus-
trial proprietary communication protocols, such as Mod-
bus/TCP or the DLMS/COSEM, which can be used to
regularly transmit information about a device or system.
Modbus/TCP includes some function codes, as shown in
Table 1, that can be customized tomeet a specific demand.
The DLMS/COSEM is a complicated protocol that few
fuzzing systems can test. In the future, more varieties of
protocols will be developed to adapt to devices with differ-
ent functions. However, many fuzzing systems currently
require prior knowledge of the format of the protocol for
mutation. Users need to define the rule of the protocol and
decide whether the field can be mutated or not. In addi-
tion, some fuzzers can generate test data automatically
but can only test a single protocol, such as MTF (Voyi-
atzis et al. 2015). Multiple different industrial proprietary
communication protocols may be developed on the same
device (Lin and Liu 2019). If users need to perform fuzzing
tests on those protocols, much time will be required to
understand the structure of each protocol, and the muta-
tion rule will have to be defined by the users themselves.
A tester who has professional knowledge is even required
to assist in testing, and the testing process will require
substantial labor costs.

Table 1 Modbus function code categories

Function Code (DEX) Categories

1∼64 Public function codes

(Define reading, writing. . . etc.)

65∼72 User-Defined

73∼99 Public function codes

100∼110 User-Defined

111∼127 Public function codes

128∼255 Reserved

Therefore, we propose a black box and an automated
fuzzing system to test the industrial proprietary commu-
nication protocol. Our contributions are as follows:

• We automatically created test data by using LSTM to
predict the similar data of proprietary protocol and
defined the field that can be mutated. The amount of
data predicted by LSTM that can be identified as the
real protocol content is up to 90% or more. With this
feature, testers do not need to spend time
understanding the structure of different protocols.

• We used the feedback strategies to adjust the weight
of the mutation type to create test data with more
possibilities to cause the unusual connection status.
Compared with the first round of test results, it can
not only help users find 69% more data able to cause
an abnormal connection with the device but also
highlight the scope of the data that can trigger these
connection statuses.

• Finally, we designed five experiments to verify the
effectiveness of our system and compared our system
with three other well-known fuzzing systems. The
tested devices and fuzzing systems include
open-source and commercial versions. After
comparison, it was found that ICPFuzzer can trigger
the DUT to crash with fewer test cases. The number
of sending times of ICPFuzzer is less than the
commercial version of the fuzzing system. Moreover,
we tested the device which uses DLMS/COSEM with
no knowledge about this protocol and obtains a good
result.

The remainder of this paper is organized as fol-
lows. “Learning-based fuzzer architecture design” section
describes the architecture and operating process of ICP-
Fuzzer, including the prediction methods related to
LSTM and the feedback strategy mutation used to cre-
ate test data. In “Experiment and evaluation” section,
we evaluate our method from different aspects. Five
experiments are conducted to verify the system efficacy
and compare it with that of other well-known fuzzing

Lin et al. Cybersecurity (2021) 4:28 Page 3 of 15

systems. “Discussion” section discusses the limitations
of ICPFuzzer. “Related work” section reviews related
studies. Finally, “Conclusions” section concludes the
paper.

Learning-based fuzzer architecture design
To solve the problem of users having to define the muta-
tion fields and methods and to increase the effectiveness
of the test data, we use machine learning and a feedback
strategy to create the test data. Therefore, in this paper,
we propose a black-box fuzzing system named ICPFuzzer,
which is an automated fuzzing test system for indus-
trial proprietary communication protocols. Algorithm 1
shows the procedure of ICPFuzzer. Users do not need
knowledge of the protocol; they need to input only the
information I (IP or port, etc.) of the device and the
PCAP file, which is related to the contents of the proto-
col that the DUT uses to carry out communication. After
starting the process, ICPFuzzer uses machine learning
to predict the communication behavior of the DUT and
creates test data that are similar to the original communi-
cation contents to avoid excessive useless data for testing.
Then, we classify and distinguish the unknown format of
the protocol. The contents of the data are divided into
many blocks. One of those blocks is selected for muta-
tion and can be used to determine the data that have more
possibilities of resulting in the DUT connection being
reset or the system crashing. In addition, we analyze the
results of the first round of the test to focus on the spe-
cial status of the DUT connection, such as connection
reset or timeout, and then the test data can be effec-
tively mutated by using feedback strategies for further
testing. ICPFuzzer includes two major phases, as shown
in Fig. 1. The details of each phase are introduced in the
following.

Algorithm 1: Fuzzing with ICPFuzzer
Input: PCAP, I

1 while not end of PCAP do
2 Filtering(PCAP, I)
3 LSTM_Predicting_And_Separating_Block()
4 while the DUT is not crashed do
5 while not end of the output of

LSTM_Predicting_And_Separating_Block() do
6 Execution_Testing()
7 Feedback_Strategy()
8 while not end of the output of

Feedback_Strategy() do
9 Execution_Testing()

10 Generating_Report()

Fig. 1 The two phases of ICPFuzzer. The automatic generating phase
and the feedback strategy phase

Automatic generating phase
The aim of the automatic generating phase is to generate
test data based on machine learning and define the format
of the data to mutate it.

Content filtering
As the beginning of the whole testing process, we first fil-
ter the contents of the protocol. The operation process is
shown in Fig. 2. Initially, ICPFuzzer receives a PCAP file
and the setting information of the DUT, including the IP
and port. Then, we convert the PCAP file to a JSON file
by using tshark and extract the contents of the application
layer with which it communicates based on the informa-
tion of the DUT. Like we select the contents by using the
destination IP and port. If the value of the destination
information is same with we expect, than we select the
application payload as the contents. For example, the pay-
load’s destination IP and port are same with the DUT’s.
We also choose the data depending on the character of
the DUT, such as the server or the client. According to
the role of ICPFuzzer (in Modbus/TCP, ICPFuzzer is the
client), we add “ ** ” to the beginning of each data point,
which is used as a separation point between data points,

Lin et al. Cybersecurity (2021) 4:28 Page 4 of 15

Fig. 2 The filtering process. Conversion of the PCAP file into a JSON file, and then extraction of the information of tcp.payload according to the role
of the system

and then connect all the data points in series. In addition,
we replace “ : ” with a space.
To create more suitable test data with content similar

to the actual communication behavior, we use LSTM to
learn the data and create more data similar to the original
communication behavior of the protocol. Before this step,
the data must be transformed into data that are suited for
the LSTMmodel. The process is shown in Fig. 3. The data,
except for the separation points, are converted from HEX
to DEC, similar to the conversion from 0xac to 172. The
separation points help the LSTM module become aware
of breakpoints in messages. After completing these data,
they are sent to the LSTMmodule.

Fuzzing data generation
To solve the data quantity problem and create high-quality
test data, we choose machine learning to learn the com-
munication content between the server and client and
simulate more details to create the basic data of the test
data. Among the many machine learning methods, the
feature of LSTM (Hochreiter and Schmidhuber 1997) is
that it can remember the semantics of the sentences and
that it is able to produce continuous data for strings,
which can help us generate test data that are similar to the
content of the packet data.

LSTM is an advanced version of the RNN (Lipton et al.
2015), which can solve the problem of memory loss. In
the standard RNN, the core has only one layer contain-
ing tanh. Although it is widely used to process sequential
data, it is easy for gradient disappearance to occur (Ben-
gio et al. 1994), and LSTM adds a sigmoid to each layer
for control to improve the RNN problem. The sigmoid
unit outputs a value between 0 and 1, describing how
much data can be passed: 0 means that data are not
allowed to pass, while 1 means that data are allowed to
pass. LSTM mainly uses the cell state and three-layer
structure to control which feature needs to be remem-
bered, including the forget gate, the input gate and the
output gate. The forget gate is the first layer of LSTM,
and the content contains a sigmoid. This layer can deter-
mine what proportion of the new and old information
needs to be forgotten and should not enter into the next
layer. The second layer is the input gate, which deter-
mines how much information from the first layer will
be recorded and updated in it. This layer contains a sig-
moid and tanh. The output gate contains a sigmoid and
tanh as well. It decides what information needs to be
output for prediction. The cell is used to store the cal-
culated value of each gate and can affect the next cell
state.

Fig. 3 The conversion process. Conversion of data from HEX to DEC for LSTM learning

Lin et al. Cybersecurity (2021) 4:28 Page 5 of 15

Fig. 4 The Learning process about layers. There are two LSTM layers we use to learn and predict the data

As shown in Fig. 4, we use two LSTM layers to learn and
predict the data. Our activation function is softmax, and
we use RMSprop as the optimizer. At least 2000 payloads
which start with ** are sent into LSTM. After inputting the
data from the content filter into LSTM, many ** symbols
are added at the beginning of the predicted data points
first, and then the subsequent data points are predicted in
order on the basis of **. The predicted data are then con-
verted to HEX as the final output. The operation process
is shown in Fig. 5, and the predicted result is shown in
Fig. 6.
Machine learning is a good way to simulate data and

has the possibility to mutate the data. This method can
make data not only abnormal relative to the DUT but also
reduce the amount of useless data. To increase the test
intensity and obtain better test data, ICPFuzzer mutates
the data predicted by the LSTMmodule. However, before
the data are mutated, it is necessary to distinguish the
blocks of the data that need to be mutated. For unknown
protocols, it is difficult to appropriately distinguish the
blocks. Therefore, we use the Needleman and Wunsch
(1970) algorithm to solve the problem of classifying the

blocks. The aim of this algorithm is to align protein or
nucleotide sequences. We exploit this algorithm to sepa-
rate the predicted data into blocks and then calculate the
difference rate of each block. If the difference rate is lower,
it means that the fault tolerance of the device for that block
may be lower. Therefore, the probability of choosing this
block for mutation is increased. Because some values may
be fixed, for example, the Unit ID inModbus/TCP, we add
a threshold. This threshold reduces the chance of muta-
tion of these blocks to avoid generating too much invalid
test data.
The method of counting the block difference rate is

shown in Eq. 2, where D is the dataset of the block differ-
ence rate. P is the number of different values in a column,
as shown in Eq. 1, where q is the total number of blocks
and M is the total amount of data. The aim is to calcu-
late the proportion of the difference value in each block.
Equation 3 shows the resulting block difference rates.
According to Fig. 7, with the previous five sets of values
and a column with a block index of 1 as an example, there
are four different values in the first column. Thus, p1 is 4,
M is 5, and the block difference rate is 0.8.

Lin et al. Cybersecurity (2021) 4:28 Page 6 of 15

Fig. 5 The prediction process. Prediction of the next value by LSTM
based on the previous content

P = {
p1, p2, . . . , pq

}
(1)

FD = P
M

(2)

Dresult =
{p1
M

,
p2
M

, . . . ,
pq
M

}
(3)

If the total difference value is 4+n1 and the total number
of columns is 5 + m, then the similarity of the block is
4+n1
5+m , as shown in Fig. 8. n1 is an integer that represents
the amount of the rest of the different types of data in the
first column. m is an integer that represents the amount of
test data except for the first five data points.
After calculating the block difference rate, it can be

seen that block index 2, block index 4, and block index

6 are significantly lower. The reason is that for Mod-
bus/TCP, block index 2 is the protocol number, which
is basically fixed to two 0x00, and block index 4 is the
Unit ID of the DUT. If it changes, the DUT has a great
chance of not accepting it and not responding. Block index
6 is part of the contents of the data. The reason that
most of this block is 0x00 is because the value at this
position in the original data is almost 0x00. After the
calculation of the block difference rate, a block will be
selected according to the block difference rate to com-
bine the randommutation methods into a single mutation
type. ICPFuzzer has seven mutation methods, including
bit flips, byte exchange, byte copies, and byte removal
(Jääskelä 2016). This combination will be brought into the
next test and is related to the feedback strategy phase.
Taking Fig. 9 as an example, the block index of these data
is 3, and the mutation method is an increment. This com-
bination becomes one of the mutation types. Through
our system, if we analyze different types of protocols,
ICPFuzzer will generate different numbers of mutation
types, as different protocols have different total numbers
of blocks.

Feedback strategy phase
The feedback strategy phase aims to create more efficient
data depending on the connection status from the DUT
and to help users find more suspicious data. We gather
the result of the first testing round and define different
weight value of the connection result. The more serious
connection result, such as connection timeout, which has
bigger weight value. Compared with the first round of
mutations type, the probability of occurrence is the same.
The probability of the second round of mutations will be
given different weights based on the test results of the first
round, so that the certainmutations will occurmore often.
The method is to arrange the weight values of the

mutation types and then use the binary search method
(Wikipedia contributors 2020b) to select the mutation
type that can cause a certain situation by the weighted
probability. Since it is a probabilistic choice, other muta-
tion types also have the opportunity to be selected. The
feedback strategy phase can not only increase the num-
ber of triggers of those special statuses of the DUT but

Fig. 6 The result after LSTM prediction. The prediction includes “**”, and it separates the test data automatically

Lin et al. Cybersecurity (2021) 4:28 Page 7 of 15

Fig. 7 The example of the block difference rate. After the data are divided, the block difference rate can be calculated from the different types of
values in the same column. Each column represents a block. Taking the first column as an example, the block difference rate is 4

5

also test other mutation types. We record the test results
of the test data created by these seven mutation methods
and blocks after the first round of testing. We use Eq. 4 to
determine the adjusted weight of each mutation type; T is
the number of times that the connection status occurs, S
is the weight of each connection status, K is the dataset
of the new weight of the mutation type, and h is the total
number of occurrences of the connection status. Then,
we use Eq. 5 to count the possibilities after adjusting the
weight value, where l is the total number of mutation types
and W is the dataset of the new possibilities.

αK =
h∑

i=1

(
Si ∗ TSi

)
(4)

FW = αK
∑l

i=1 αi
(5)

Algorithm 2 shows how we analyze the results of the
previous round and generate test data for the next test
round to further test some specific statuses of the DUT.
Take Table 2 as an example. Before adjusting the weights,

all mutation types have the same probability to be used.
The total number of mutation types in the first round is
49, including seven mutation methods corresponding to
seven blocks. We first take the results of 5 mutation types
for explanation purposes. In the first round of mutations,
the probability of occurrence of various mutation types is
1
49 , which means that the probability of all mutation types
is equal at first.
After the first round of testing, taking mutation type 1

as an example, it caused a total of three statuses for the
DUT: status 1, status 2 and status 3. It was indicated that
status 2 was triggered the most. The status description
after considering Table 3 shows that the test data created
by mutation type 1 can result in a success response, con-
nection timeout and no response relative to the DUT. The
connection timeout status is the most serious state; thus,
we raise the weight of this status to 7. The no response
status is abnormal but not too serious; thus, we raise the
weight of this status to 3. The success response weight is
1. Before starting the second round of testing, it is neces-
sary to go through the feedback strategy phase. We add

Fig. 8 The example of the block difference rate for total data. If the total amount of test data is 5+m, the block difference rate in the first column will
be 4+n1

5+m . There are 4 + n1 different values in the first column

Lin et al. Cybersecurity (2021) 4:28 Page 8 of 15

Fig. 9 The combination of the block number an the mutation method. When the block number is 3 and the mutation method is an increment, the
value of the third block is chosen to be increased

Algorithm 2: Feedback counting
Input : S, T, R
Ouput: W

1 Send the test data and aggregate the result R
2 while not end of R do
3 temp = 0
4 for i ← 1 to h do
5 temp = Si ∗ TSi + temp
6 αK = α + temp
7 for i ← 1 to K do
8 Wi = αi

αK

9 return W

the total value of the weight according to the status corre-
sponding to mutation type 1. The number of occurrences
of status 1 is 13, the number of occurrences of status 2 is
28 and the number of occurrences of status 3 is 1; thus,
the total weight of mutation type 1 in the second round is
13 × 1 + 28 × 7 + 1 × 3 = 218, and so on for the other
mutation types. When the total weights of all mutation
types have been calculated, the calculation of the occur-
rence probability of each mutation type is based on all the
total weights; then, the weighted occurrence probability of

mutation type 1 is 214
514+j , where j is the total weight of the

rest of the mutation types. The same value for mutation
types 2 to 5 are 81

514+j ,
57

514+j ,
143

514+j , and
15

514+j , respectively.
After a comparison, we find that the probabilities are

different after using the mutation strategy. The probability
of occurrence of mutation types containing status 2 after
adjusting the weight is indeed higher than that of other
mutation types.
After mutating the data, ICPFuzzer sends test data to

the DUT and monitors the received responses. The order
of the test data is tested one by one according to the
sequence of data created by mutating. Exceptions will be
captured from the DUT, which is under abnormal condi-
tions. There are currently three main connection statuses:
success response, abnormal connection and connection
refused. The process used by our system to judge the sta-
tus of a DUT is shown in Fig. 10. When the test is started,
the system first connects to the DUT and then sends pack-
ets. It also monitors the response status of the DUT by
capturing the connection. There are three statuses that are
abnormal: connection timeout, connection reset and no
response. These three statuses will be taken as the basis for
the number of times to restart the connection. If the max-
imum number of times set by the user is finally reached,
the system will restart the connection. If the connection
is refused after restarting the connection, ICPFuzzer will

Table 2 The probability of occurrence of five mutation types in the first round and the second round depending on the status of the
feedback from the DUT

Mutation type
number

Original
possibility

First round test
result (occurrence)

Adjusted
Weight

Possibility after
adjusted weight

1 1
49 Status 1 : 13 times

Status 2 : 28 times
Status 3 : 1 time

218 218
514+j

2 1
49 Status 1 : 66 times

Status 3 : 5 times
81 81

514+j

3 1
49 Status 3 : 19 times 57 57

514+j

4 1
49 Status 1 : 1 time Sta-

tus 2 : 16 times Sta-
tus 3 : 10 times

143 143
514+j

5 1
49 Status 3 : 5 times 15 15

514+j

. .

Lin et al. Cybersecurity (2021) 4:28 Page 9 of 15

Table 3 Different weight values defined according to the
severity of the connection status relative to the DUT

Status Description Weight

1 Success Response 1

2 Connection Timeout 7

3 No Response 3

directly end the connection and terminate the test. If the
test is in the first round, the results will be aggregated and
analyzed to generate the test data for the second round. If
the test is in the second round, the testing report will be
generated.
After completing the fuzzing test, ICPFuzzer sets the

information of the DUT, including the IP, port, name, and
test information such as the file location where the evi-
dence will be saved, the training time and the testing time
for each round. The report also includes the outline and
details of the test data and results. JSON files and PDF files
are generated so that users can refer to them and further
test the DUT.

Experiment and evaluation
In this section, we conducted five experiments to verify
the effectiveness of ICPFuzzer. The first four experiments
were based on Modbus/TCP, while the fifth experiment
verified the DLMS/COSEM. In order to collect the data
for training, we sent messages that conform to the proto-
col format but have random values to the tested device,
and collect messages that can cause effective responses
as the training data. First, we compared the recognition
rate of the test data produced by LSTM and that obtained
using different tested device samples with different num-
bers of epochs. The main results can be used to prove that
the use of machine learning to create test data can fit in
the format of the protocol. Then, we considered the dif-
ference between using the feedback strategy phase or not.

At the same time, we compared the time taken by differ-
ent weight random selection algorithms and compared the
effects that those algorithms achieve. In the third experi-
ment, we compared the effect of three well-known fuzzers
with open-source and commercial versions. In the fourth
experiment, we tested the physical equipment with Mod-
bus/TCP in different fields and found the existing vulner-
abilities. In the final experiment, we performed learning
prediction and fuzzing tests for the DLMS/COSEM in the
smart grid field.

ICPFuzzer evaluation
We completed two experiments to prove that LSTM can
actually create similar protocol data and that our feedback
strategy can trigger more vulnerabilities.

Recognition rate evaluation
Our test environment was set in VMWare which OS was
Ubuntu 16.04 and memory was 8096 mb. The tested
devices use Modbus/TCP simulation programs, i.e., Mod-
busPal v1.6 (Darkweb and nnovic 2011) and Modbus_tk
v1.0.0 (Luc Jean 2019). These DUTs have better receiv-
ing capabilities and will not crash during the test. We sent
the data predicted by the LSTM for different numbers of
epochs to the DUT and used tcpdump to record the test-
ing process at the same time. Then, we saved the data as
a PCAP file and used tshark to convert the data into the
JSON format for analysis. If the transmitted message can
be recognized as Modbus/TCP data, then the valid data
can be included in the recognition counts. The results are
as shown in Figs. 11 and 12.
According to the first experiment, we find that LSTM

can well simulate the communication format of the proto-
col. It can lessen the time needed by testers to understand
the protocol. The average recognition rate is more than
90%. After testing with two different devices, we find that
the change in a number of epochs will not largely affect
the recognition rate. Even whenmutating the test data, the
recognition rates are still greater than 60.

Fig. 10 The connection statuses. After sending the test data, the system will perform different processes according to the different response
statuses of the DUT

Lin et al. Cybersecurity (2021) 4:28 Page 10 of 15

Fig. 11 The recognition rate of ModbusPal. The recognition rate of the data predicted by LSTM and using ModbusPal as the DUT

In addition, we take the predicted data, ModbusPal as
the DUT, and epoch 1 to train the data, as shown in Fig. 13.
According to the predicted data, one can find that the
probability that the predicted data is fixed in the protocol
format is high. Taking ** 00 06 00 00 00 06 01 05 00 06
ff 00 as an example, the position of 0x05 is the function
code, and the value represents the Modbus/TCP function
for writing a single coil. With the function 0x05, the con-
tent can be filled only with “0xff 0x00” or “0x00 0x00”;

thus, the prediction is correct. In addition, in terms of
length, the position of 0x06 is the length of the message,
and the length of the subsequent values is exactly 6. Tak-
ing ** 00 ec 00 00 00 0b 01 10 00 25 00 02 04 00 08
00 09 as an example, 0x0B is converted to DEX (i.e., 11),
which is also representative of the length, and the value
of the next 11 values is predicted. Therefore, it is indeed
suitable to use LSTM to predict the content of unknown
protocols.

Fig. 12 The recognition rate of Modbus_tk. The recognition rate of the data predicted by LSTM and using Modbus_tk as the DUT

Lin et al. Cybersecurity (2021) 4:28 Page 11 of 15

Fig. 13 The predicted results of ModbusPal. The data predicted by LSTM when the epoch is 1. The DUT is ModbusPal

Validating the feedback strategy phase
Our test environment was set in VMWare which OS was
Ubuntu 16.04 and memory was 8096 mb, and we used
ModbusPal v1.6 as the DUT. There are two outcomes: 1)
connection timeout and 2) the situation in which the DUT
does not reply after receiving the message. In the second
round of testing, three different weight random selection
algorithms (Wikipedia contributors 2020c) were used: the
random selectionmethod (R) (Müller 2016), Alias method
(A) (Walker 1977) and binary search method (B). At
present, these three algorithms are often used. The time
needed to create the test data was compared separately,
as shown in Fig. 14. Clearly, the binary search method
requires the shortest amount of time.
After implementing the three different weight random

selection algorithms in the system, the differences in the
results and calculation times between the first round and
the second round were compared. The results are shown
in Tables 4 and 5. According to the experiment, we find
that after completing the feedback strategy phase, the
possibility of triggering the special status is higher, and
more different data contents can be found and cause the
connection timeout status of the DUT to occur or the
connection to be reset. Comparing the three different

random weight selection algorithms, it is found that the
test data created by these three methods can yield good
results. Compared with the time period, the binary search
method is the fastest, but in terms of effect, the random
selection method is the best and can achieve a higher
effect in the second round. Excessive no response statuses
will result in connection reset. The reset status occurs
because the DUT has closed the connection, and the send-
ing side is still reading and writing. Even if the sending side
is well controlled, the connection must be reconnected
to continue the communication. In the end, the binary
search method is chosen because the three methods have
similar effects in terms of results, but the calculation time
is almost half that of the others.

Comparison to other fuzzers
In addition toModbusPal andModbus_tk, we additionally
tested Modbus-slave (Witte Software 2020), pymodbus
(RiptideIO 2020), ModbusTool (Graham ross and matt
Sargent 2020) and diagslave (ProconX Pty Ltd 2020). The
first three simulators were installed on Windows 10, and
the last one was installed on Ubuntu 16.08. These envi-
ronments were all set in VMWare which memory was
8096 mb. To compare the performances of the fuzzers,

Fig. 14 The comparison of spending times. Comparison of the spending times of the random selection method, Alias method, and binary search
method

Lin et al. Cybersecurity (2021) 4:28 Page 12 of 15

Table 4 Comparison of the probabilities of causing connection
timeout and the execution time of the whole test

Round 1st 2nd (R) 2nd (A) 2nd (B)

Connection timeout 23.1% 46.5% 39.6% 42.8%

Period – 0.0131 s 0.0192 s 0.0046 s

we compared ICPFuzzer with Peach Tech (2020), boo-
Fuzz (Joshua 2020) and beStorm (Beyond security 2020).
Peach and booFuzz were installed on Ubuntu 16.08, and
beStorm (30-minute trial version) was installed on Win-
dows 10. Our purpose is to compare how many packets
the fuzzer needs to send tomake the DUT inoperable such
that it must be restarted for operation.
In this experiment, ICPFuzzer is able to find the error

data and cause the DUT to crash with the least number of
packages. If the DUT crashes, it should be restarted, and
some other devices may even need the configuration to be
reset, as shown in Table 6. According to the results of this
experiment, the test cases of pymodbus, ModbusTool and
Diagslave have excellent test results. ICPFuzzer can use
fewer packets to cause the DUT to crash. Modbus-slave is
related to the expiration of the applicable time, resulting
in the DUT being automatically disconnected. ModbusPal
and Modbus_tk have a better ability to receive data with
the incorrect format; thus, all fuzzers cannot crash their
system.

Fuzzing performance evaluation
The above experiments all tested the communication of
the Modbus/TCP simulator. Moreover, we also tested
three different devices: an air monitor that can be set at
home and two programmable logic controllers (PLC) that
are used in factories, one to control a hydraulic system
with a motor (IDEC 2020) and one to control a robot
arm (ICPDAS 2020). After testing the air monitor, we
found that it could not process the unsupported function
code, and sending similar data would cause the air moni-
tor to crash. After testing the second DUT, we found that
the motor can be controlled with an additional function
code, but this function is not shown on the instruction
manual. When there is no water, sending a command to
start the motor will cause it to burn, the consequences
of which are very serious. The third DUT has a problem

Table 5 Comparison of the probabilities of the DUT responding
with “No Response” or “Connection Reset” and the execution
time of the whole test

Round 1st 2nd (R) 2nd (A) 2nd (B)

No Response 38% 44.3% 40.4% 43.5%

Connection Reset 13.7% 17.2% 18% 16.2%

Period – 0.0117 s 0.0222 s 0.0031 s

with an instruction that can cause the robotic arm to oper-
ate excessively and the entire system to stop operation;
even if it is restarted after unplugging, it cannot resume
operation.
In addition, we used ICPFuzzer to test a device that

communicates with an unencrypted DLMS/COSEM. The
test environment was set in VMWare which OS was
Ubuntu 16.04 and memory was 8096 mb, and the test
simulator was openMUC (2020). We ran at least 10,000
test cases and did not test the HLS phase or the autho-
rization phase. We simply tested the communication
phase after authorization. Therefore, we sent the HDLC
layer data first, and then the authentication data of the
DLMS/COSEM layer were transmitted. The contents of
the data were not transmitted until the authentication was
confirmed to be successful. ICPFuzzer could send data in a
format similar to that of the DLMS/COSEM. Even though
this proprietary protocol is complicated, the system was
able to complete the test. We also found that the feed-
back strategy phase worked with the protocol. For the no
response status, the number of data points in the second
round was significantly greater than that in the first round,
as shown in Table 7.

Discussion
Although ICPFuzzer has the ability to detect messages
that can cause the DUT to crash or the connection to
be reset, compared with other fuzzers, it has better capa-
bilities; however, there are still many functions that need
to be improved. This section discusses the capabilities
and weaknesses of our method observed through the
above experiments and how we can improve in the future.
According to the results of the first experiment, although
the data predicted by LSTM are highly recognizable and
can indeed help testers save time in understanding the
protocol, it is shown that the epoch has nomajor influence
on the result. It is found that the sample data generated by
different devices yield different training results. In addi-
tion, the recognition rate after a mutation still needs to
be improved. A classifier will be added later to automati-
cally select the mutation method. This is one of the future
research topics. From the second experiment, we know
that the feedback strategy phase can effectively increase
the amount of data needed to find error messages. How-
ever, although more rounds of testing may indeed yield
more messages, they may also cause the test time to be
too long. In addition, the fastest and most effective weight
random selection algorithm was also found. The fuzzing
test cannot be used to test the crashed status of a DUT
that cannot be started by using the command line, as this
is something that the feedback strategy phase cannot do.
The third experiment clearly shows that the test data

created by ICPFuzzer are more likely to cause device
crashes than the test data created by the rules set by

Lin et al. Cybersecurity (2021) 4:28 Page 13 of 15

Table 6 Comparison of the number of frames of different fuzzers before the DUT crashed

ICPFuzzer Peach booFuzz beStorm

Pymodbus <50 frames >100 frames >50 frames >500 frames

Modbus-slave DUT timeout DUT timeout DUT timeout DUT timeout

ModbusTool <30 frames 50∼100 frames >100 frames >5000 frames

ModbusPal Not crash Not crash Not crash Not crash

Diagslave >800 frames – – >800 frames

the users. The limitation is that we need to learn from
the existing communication data. How to obtain more
effective data is a limitation of our system. Taking Mod-
bus/TCP as an example, the function code may include
more data or the test data cannot be set for different
devices; for example, different devices have different Unit
IDs.
In addition to using the simulator as the DUT, we also

tested a real ICP device. After the fourth experiment,
it could be proved that in addition to the good detec-
tion of the Modbus/TCP simulator by ICPFuzzer, the test
results of the physical devices can also yield good out-
comes. However, compared to the fast response speed of
the simulator, the response speed of the physical device is
very slow, and the test time must be considered. In addi-
tion, if the device crashes, it is more difficult to directly
restart a physical device using the command line, and to
get the device back on-line, it may even be necessary to
restart the power source. The fifth experiment shows that
ICPFuzzer can test the DLMS/COSEM, which is a com-
plex protocol and can be used in a smart grid. Although
it can simulate intermediate communication, the previous
handshake phase needs to be achieved by the playback
function. Therefore, how to use machine learning to pre-
dict the handshake phase is still a problem. At present,
there is a fuzzer use state machine that can record the
phase of a protocol to complete the fuzzing test for the
stateful protocol (Ma et al. 2016). The handshake phase
and communication phase can also be tested separately.
Therefore, how to complete the fuzzing test for the state-
ful protocol will also be the focus of one of our future
studies.

Related work
At present, many fuzzing methods for industrial propri-
etary communication protocols have been proposed. How

Table 7 The result of testing the DLMS/COSEM by using
ICPFuzzer

Round No COSEM response Correct

1st 131 241

2nd 249 135

to mutate data and maintain the high performance of
testing is the main research direction.

Grammar-based fuzzer
Modbus/TCP is a very widely used protocol in industry. It
can be used in air monitors for homes or robotic arms for
communication in many factories. To test Modbus/TCP
more effectively, many studies have researched and devel-
oped many good methods. To pursue efficient results,
most mutation methods use grammar-based mutation to
change the data content. MTF (Voyiatzis et al. 2015) is
a fuzzing system that can test eight implementations of
Modbus/TCP. To avoid too many invalid test data points,
MTF first investigates what function codes the DUT has
and then tests for specific types of mutation. There is
another Modbus/TCP fuzzing system (Xiong et al. 2015),
which is a black-box testing technology. To reduce the
number of tests, it first confirms which function codes
the DUT has and then does not send the related test
data. However, the disadvantage of both systems is that
the users need to traverse all function codes before they
can start performing mutation and testing. MTF-Storm
(Katsigiannis and Serpanos 2018) was based on MTF.
Compared to randomly generating data, MTF-Storm uses
some special values to trigger the vulnerabilities. Another
white-box fuzzing system (Yoo and Shon 2016) uses
dynamic information extracted from program execution
and finds the input field to generate the test data. Addi-
tionally, there are famous commercial fuzzing systems
for testing communication protocols, i.e., beStorm and
Defensics (Synopsys 2020). The disadvantage of these
fuzzing systems is that a protocol testing module needs to
be specified, the test data are fixed, and the vendor needs
to be updated first. Moreover, Peach and boofuzz are use-
ful open-source fuzzing systems that users can utilize to
define the rules of the testing protocol and monitor the
DUT.

Computing-based fuzzer
ProFuzz (Niedermaier et al. 2017) uses the Rat-
cliff/Obershelp pattern recognition algorithm to analyze
the structure of proprietary industrial protocols and
create the package objects. It can determine the pro-
prietary handshake between devices, including the TCP
handshake.

Lin et al. Cybersecurity (2021) 4:28 Page 14 of 15

Mutation-based fuzzer
Some fuzzing systems use existing information to per-
form mutations, such as the communication contents
of the DUT or the test data of other fuzzing systems.
This method is called mutation-based fuzzing. LZFUZZ
(Shapiro et al. 2011) creates a token using the Lempel-Ziv
compression algorithm and creates the test data based on
the packet contents to test the unknown protocol. T-Fuzz
(Peng et al. 2018) uses the test data generated by a known
coverage-guided fuzzing system such as AFL as its basis
and analyzes the state of the protocol. Vuzzer (Rawat et al.
2017) monitors the data flow features of the SUT to gen-
erate the input and uses the feedback loop to create a new
input. Another fuzzing system (Han et al. 2012) proposes
an approach to fuzzing the protocol in layer 2 by using the
PRDF module to describe the communication structure
and using the RATM module to analyze the relationship
between the fields.

Learning-based fuzzer
Machine learning is helpful for finding vulnerabilities.
Because the effectiveness of a mutation can be a problem
for fuzzing tests, most learning-based fuzzers are used to
generate test data or define the block of data to mutate.
An increasing number of studies have found significant
effects in triggering a bug by using machine learning
to generate test data. SeqFuzzer (Zhao et al. 2019) uses
LSTM to learn the communication contents of the DUT
and creates the test data. Some fuzzing systems have also
been developed in other fields. One method (Rajpal et al.
2017) first runs a general fuzzer and then uses LSTM to
learn the packet contents to achieve the purpose of creat-
ing test data. Learn&Fuzz (Godefroid et al. 2017) uses the
seq2seq algorithm to learn the format of the PDF and gen-
erates test data to test the system that displays the PDF.
In addition, some fuzzing methods test a system by ana-
lyzing the response from the DUT and generate the new
test data depending on the feedback. A method that tunes
the attributes of machine learning based on the feedback
generated by different inputs has also been developed
(Böttinger et al. 2018).

Conclusions
The advent of Industry 4.0 has caused more devices to
be connected externally for more effective control, but
this increase may also usher in more attacks. Since many
different devices have the same connection protocol for
communication, attacking the communication content
has become a threat that needs to be prevented. The
fuzzing test can be used to test whether a communication
system is defective or a device is easy to crash, and it is
considered by many standards. Moreover, there are many
fuzzers that need the tester to have knowledge of the pro-
tocol, but many devices used in factories may use many

different protocols at one time. It takes much time to fully
understand their architectures. How to effectively mutate
the data becomes the most important consideration. With
the popularity of machine learning, an increasing num-
ber of researchers have begun to study what role machine
learning can play in fuzzing tests. Research also shows
that machine learning can indeed help a fuzzing system
establish test data and obtain good results.
In this paper, we discussed the importance of the com-

munication protocols that need to be tested and proposed
an automated fuzzing system for industrial proprietary
communication protocols. We used LSTM to learn the
communication content of a device. This approach solves
the problem of testers needing to spend time to learn
about a protocol. We also used the Needleman algorithm
to determine the block and then mutated it to create the
test data. After testing a round, we used the results to
adjust the weights and used the binary search algorithm to
select the mutation type for some specific connection sta-
tuses. It is found that more test data can cause the device
to crash or the connection to be reset. The most impor-
tant thing is that all processes are operated automatically.
Users need to input only the corresponding PCAP file and
the setting information of the DUT, which can reduce the
problem of users having to define the rules of the proto-
col. Our evaluation data can be downloaded at the cloud
(Institute for Information Industry 2020).

Acknowledgements
Not applicable.

Authors’ contributions
P.Y.L conceived of the presented idea, developed the theory, performed the
computations and verified the analytical methods. C.W.T (Chia Wei Tien)
conceived of the presented idea, verified the analytical methods. T.C.H
developed the theory and performed the computations. C.W.T (Chin Wei Tien)
conceived of the presented idea, investigate and supervised the findings of
this work. The author(s) read and approved the final manuscript.

Funding
Not applicable.

Availability of data andmaterials
Institute for Information ndustry (2020) ICPFuzzer evaluation data. https://reurl.
cc/VXedlR. Accessed 13 Dec 2020.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
To the best of our knowledge, the named authors have no conflict of interest,
financial or otherwise.

Received: 12 January 2021 Accepted: 7 April 2021

https://reurl.cc/VXedlR
https://reurl.cc/VXedlR

Lin et al. Cybersecurity (2021) 4:28 Page 15 of 15

References
Bengio Y, Simard P, Frasconi P (1994) Learning long-term dependencies with

gradient descent is difficult. IEEE Trans Neural Netw 5(2):157–166
Beyond security (2020) BeSTORM: Black box testing. https://beyondsecurity.

com/solutions/bestorm.html?cn-reloaded=1. Accessed 13 Dec 2020
Böttinger K, Godefroid P, Singh R (2018) Deep reinforcement fuzzing. In: 2018

IEEE Security and privacy workshops (SPW). pp 116–122. https://doi.org/10.
1109/SPW.2018.00026

Darkweb and nnovic (2011) ModbusPal - Java MODBUS simulator. http://
modbuspal.sourceforge.net/. Accessed 13 Dec 2020

GISA Security Compliance Institute (2020) IEC-62443-CSA-Certification. https://
www.isasecure.org/en-US/Certification/IEC-62443-CSA-Certification#tab2.
Accessed 13 Dec 2020

GMicrosoft (2020) Security engineering. https://www.microsoft.com/en-us/
securityengineering/sdl/. Accessed 13 Dec 2020

Godefroid P, Peleg H, Singh R (2017) Learn fuzz: Machine learning for input
fuzzing. In: 2017 32nd IEEE/ACM International conference on automated
software engineering (ASE). pp 50–59. https://doi.org/10.1109/ASE.2017.
8115618

Graham ross and matt Sargent (2020) ModbusTool - A modbus TCP and RTU
master and slave tool with import and export functionality. https://github.
com/graham22/ModbusTool. Accessed 13 Dec 2020

Grubbs HL (2018) Field programmable gate array high capacity technology for
radar and counter-radar drfm signal processing. Calhoun. https://calhoun.
nps.edu/handle/10945/59670. Accessed 13 Dec 2020

Han X, Wen Q, Zhang Z (2012) A mutation-based fuzz testing approach for
network protocol vulnerability detection. In: Proceedings of 2012 2nd
International conference on computer science and network technology.
pp 1018–1022. https://doi.org/10.1109/ICCSNT.2012.6526099

Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput
9(8):1735–1780

ICPDAS (2020) Programmable Automation Controller (iP-8441-MTCP). https://
www.icpdas.com/root/product/solutions/pac/ipac/ip-8x41-mtcp.html.
Accessed 13 Dec 2020

IDEC (2020) IDEC programmable logic controller. http://tw.idec.com/zht/p/
c60/. Accessed 13 Dec 2020

Institute for Information Industry (2020) ICPFuzzer evaluation data. https://
reurl.cc/VXedlR. Accessed 13 Dec 2020

Jääskelä E (2016) Genetic algorithm in code coverage guided fuzz testing
Joshua P (2020) Boofuzz - network protocol fuzzing for humans. https://

github.com/jtpereyda/boofuzz. Accessed 13 Dec 2020
Katsigiannis K, Serpanos D (2018) Mtf -storm: a high performance fuzzer for

modbus/tcp. In: 2018 IEEE 23rd International conference on emerging
technologies and factory automation (ETFA) Vol. 1. pp 926–931. https://
doi.org/10.1109/ETFA.2018.8502600

Liang H, Pei X, Jia X, Shen W, Zhang J (2018) Fuzzing: State of the art. IEEE Trans
Reliab 67(3):1199–1218

Lin J, Liu L (2019) Research on security detection and data analysis for
industrial internet. In: 2019 IEEE 19th international conference on software
quality, reliability and security companion (QRS-C). pp 466–470. https://
doi.org/10.1109/QRS-C.2019.00089

Lipton ZC, Berkowitz J, Elkan C (2015) A critical review of recurrent neural
networks for sequence learning. 1506.00019

Luc Jean (2019) Modbus-tk: Create Modbus app easily with Python. https://
github.com/ljean/modbus-tk. Accessed 13 Dec 2020

Ma R, Wang D, Hu C, Ji W, Xue J (2016) Test data generation for stateful
network protocol fuzzing using a rule-based state machine. Tsinghua Sci
Technol 21(3):352–360

McLaughlin S, Konstantinou C, Wang X, Davi L, Sadeghi A, Maniatakos M, Karri
R (2016) The cybersecurity landscape in industrial control systems. Proc
IEEE 104(5):1039–1057

Müller K (2016) Accelerating weighted random sampling without replacement
Nan C, Eusgeld I, Kröger W (2013) Hidden vulnerabilities due to

interdependencies between two systems. In: Hämmerli BM, Kalstad
Svendsen N, Lopez J (eds). Critical information infrastructures security.
Springer Berlin Heidelberg, Berlin Vol. 7722. pp 252–263

Needleman SB, Wunsch CD (1970) A general method applicable to the search
for similarities in the amino acid sequence of two proteins. J Mol Biol
48(3):443–453

Niedermaier M, Fischer F, von Bodisco A (2017) Propfuzz – an it-security
fuzzing framework for proprietary ics protocols. In: 2017 International

conference on applied electronics (AE). pp 1–4. https://doi.org/10.23919/
AE.2017.8053600

openMUC (2020) JRxTx - Java serial communication library. https://github.
com/openmuc/jrxtx. Accessed 13 Dec 2020

Peach Tech (2020) Peach fuzzer. https://www.peach.tech/. Accessed 13 Dec
2020

Peng H, Shoshitaishvili Y, Payer M (2018) T-fuzz: Fuzzing by program
transformation. In: 2018 IEEE Symposium on security and privacy (SP).
pp 697–710. https://doi.org/10.1109/SP.2018.00056

Poletykin A (2018) Cyber security risk assessment method for scada of
industrial control systems. In: 2018 International russian automation
conference (RusAutoCon). pp 1–5. https://doi.org/10.1109/RUSAUTOCON.
2018.8501811

ProconX Pty Ltd (2020) Diagslave modbus slave simulator. https://www.
modbusdriver.com/diagslave.html. Accessed 13 Dec 2020

Rajpal M, Blum W, Singh R (2017) Not all bytes are equal: Neural byte sieve for
fuzzing

Rawat S, Jain V, Kumar A, Cojocar L, Giuffrida C, Bos H (2017) Vuzzer:
Application-aware evolutionary fuzzing. In: Network and Distributed
System Security Symposium. Sourced from Microsoft Academic - https://
academic.microsoft.com/paper/2613534458

RiptideIO (2020) PyModbus - A python modbus stack. https://github.com/
riptideio/pymodbus. Accessed 13 Dec 2020

Shapiro R, Bratus S, Rogers E, Smith S (2011) Identifying vulnerabilities in scada
systems via fuzz-testing. In: Butts J, Shenoi S (eds). Critical Infrastructure
Protection V. Springer Berlin Heidelberg, Berlin. pp 57–72

Su W, Antoniou A, Eagle C (2017) Cyber security of industrial communication
protocols. In: 2017 22nd IEEE International conference on emerging
technologies and factory automation (ETFA). pp 1–4. https://doi.org/10.
1109/ETFA.2017.8247769

Synopsys (2020) Defensics fuzz testing. https://www.synopsys.com/software-
integrity/security-testing/fuzz-testing.html. Accessed 13 Dec 2020

Voyiatzis AG, Katsigiannis K, Koubias S (2015) A modbus/tcp fuzzer for testing
internetworked industrial systems. In: 2015 IEEE 20th Conference on
emerging technologies factory automation (ETFA). pp 1–6. https://doi.org/
10.1109/ETFA.2015.7301400

Walker AJ (1977) An efficient method for generating discrete random variables
with general distributions. ACM Trans Math Softw 3(3):253–256

Wikipedia contributors (2020) Triton (malware) —Wikipedia, the free
encyclopedia. https://en.wikipedia.org/wiki/Triton_(malware). Accessed 13
Dec 2020

Wikipedia contributors (2020) Binary search algorithm. https://en.wikipedia.
org/wiki/Binary_search_algorithm. Accessed 13 Dec 2020

Wikipedia contributors (2020) Pseudo-random number sampling—
Wikipedia, The free encyclopedia. https://en.wikipedia.org/wiki/Pseudo-
random_number_sampling. Accessed 13 Dec 2020

Witte Software (2020) Modbus slave simulator. https://www.modbustools.
com/download.html. Accessed 13 Dec 2020

Xiong Q, Liu H, Xu Y, Rao H, Yi S, Zhang B, Jia W, Deng H (2015) A vulnerability
detecting method for modbus-tcp based on smart fuzzing mechanism. In:
2015 IEEE International conference on electro/information technology
(EIT). pp 404–409. https://doi.org/10.1109/EIT.2015.7293376

Yoo H, Shon T (2016) Grammar-based adaptive fuzzing: Evaluation on scada
modbus protocol. In: 2016 IEEE International conference on smart grid
communications (SmartGridComm). pp 557–563. https://doi.org/10.1109/
SmartGridComm.2016.7778820

You W, Wang X, Ma S, Huang J, Zhang X, Wang X, Liang B (2019) Profuzzer:
On-the-fly input type probing for better zero-day vulnerability discovery.
In: 2019 IEEE symposium on security and privacy (SP). pp 769–786. https://
doi.org/10.1109/SP.2019.00057

Zhao H, Li Z, Wei H, Shi J, Huang Y (2019) Seqfuzzer: An industrial protocol
fuzzing framework from a deep learning perspective. In: 2019 12th IEEE
Conference on software testing, validation and verification (ICST).
pp 59–67. https://doi.org/10.1109/ICST.2019.00016

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

https://beyondsecurity.com/solutions/bestorm.html?cn-reloaded=1
https://beyondsecurity.com/solutions/bestorm.html?cn-reloaded=1
https://doi.org/10.1109/SPW.2018.00026
https://doi.org/10.1109/SPW.2018.00026
http://modbuspal.sourceforge.net/
http://modbuspal.sourceforge.net/
https://www.isasecure.org/en-US/Certification/IEC-62443-CSA-Certification#tab2
https://www.isasecure.org/en-US/Certification/IEC-62443-CSA-Certification#tab2
https://www.microsoft.com/en-us/securityengineering/sdl/
https://www.microsoft.com/en-us/securityengineering/sdl/
https://doi.org/10.1109/ASE.2017.8115618
https://doi.org/10.1109/ASE.2017.8115618
https://github.com/graham22/ModbusTool
https://github.com/graham22/ModbusTool
https://calhoun.nps.edu/handle/10945/59670
https://calhoun.nps.edu/handle/10945/59670
https://doi.org/10.1109/ICCSNT.2012.6526099
https://www.icpdas.com/root/product/solutions/pac/ipac/ip-8x41-mtcp.html
https://www.icpdas.com/root/product/solutions/pac/ipac/ip-8x41-mtcp.html
http://tw.idec.com/zht/p/c60/
http://tw.idec.com/zht/p/c60/
https://reurl.cc/VXedlR
https://reurl.cc/VXedlR
https://github.com/jtpereyda/boofuzz
https://github.com/jtpereyda/boofuzz
https://doi.org/10.1109/ETFA.2018.8502600
https://doi.org/10.1109/ETFA.2018.8502600
https://doi.org/10.1109/QRS-C.2019.00089
https://doi.org/10.1109/QRS-C.2019.00089
http://arxiv.org/abs/1506.00019
https://github.com/ljean/modbus-tk
https://github.com/ljean/modbus-tk
https://doi.org/10.23919/AE.2017.8053600
https://doi.org/10.23919/AE.2017.8053600
https://github.com/openmuc/jrxtx
https://github.com/openmuc/jrxtx
https://www.peach.tech/
https://doi.org/10.1109/SP.2018.00056
https://doi.org/10.1109/RUSAUTOCON.2018.8501811
https://doi.org/10.1109/RUSAUTOCON.2018.8501811
https://www.modbusdriver.com/diagslave.html
https://www.modbusdriver.com/diagslave.html
https://academic.microsoft.com/paper/2613534458
https://academic.microsoft.com/paper/2613534458
https://github.com/riptideio/pymodbus
https://github.com/riptideio/pymodbus
https://doi.org/10.1109/ETFA.2017.8247769
https://doi.org/10.1109/ETFA.2017.8247769
https://www.synopsys.com/software-integrity/security-testing/fuzz-testing.html
https://www.synopsys.com/software-integrity/security-testing/fuzz-testing.html
https://doi.org/10.1109/ETFA.2015.7301400
https://doi.org/10.1109/ETFA.2015.7301400
https://en.wikipedia.org/wiki/Triton_(malware)
https://en.wikipedia.org/wiki/Binary_search_algorithm
https://en.wikipedia.org/wiki/Binary_search_algorithm
https://en.wikipedia.org/wiki/Pseudo-random_number_sampling
https://en.wikipedia.org/wiki/Pseudo-random_number_sampling
https://www.modbustools.com/download.html
https://www.modbustools.com/download.html
https://doi.org/10.1109/EIT.2015.7293376
https://doi.org/10.1109/SmartGridComm.2016.7778820
https://doi.org/10.1109/SmartGridComm.2016.7778820
https://doi.org/10.1109/SP.2019.00057
https://doi.org/10.1109/SP.2019.00057
https://doi.org/10.1109/ICST.2019.00016

	Abstract
	Keywords

	Introduction
	Learning-based fuzzer architecture design
	Automatic generating phase
	Content filtering
	Fuzzing data generation

	Feedback strategy phase

	Experiment and evaluation
	ICPFuzzer evaluation
	Recognition rate evaluation
	Validating the feedback strategy phase

	Comparison to other fuzzers
	Fuzzing performance evaluation

	Discussion
	Related work
	Grammar-based fuzzer
	Computing-based fuzzer
	Mutation-based fuzzer
	Learning-based fuzzer

	Conclusions
	Acknowledgements
	Authors' contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	References
	Publisher's Note

