
http://crossmark.crossref.org/dialog/?doi=10.1186/s42400-021-00088-4&domain=pdf
mailto: shushana@usc.edu
http://creativecommons.org/licenses/by/4.0/

Arakelyan et al. Cybersecurity (2021) 4:26 Page 5 of 14

Fig. 2 An example of the program graph. Parts of the graph are highlighted in the same color, as instructions on lines 1 and 2, to demonstrate
where those instructions were mapped to in the graph

every constant, and chains of Iex_WrtTmp → ‘t%’ →
Iex_RdTmp1. This is demonstrated in Fig. 3.
After the graph construction is complete, we remove

SSA indices for temporary variables and registers to
reduce the number of distinct labels.

1In VEX Iex_Const represents a constant value, Iex_WrtTmp a write
operation (to a temporary variable), and Iex_RdTmp a read operation (from a
temporary variable)

From the labels of the nodes we construct a “feature
matrix” of the graph, which is a matrix of size n×d, where
n is the number of nodes in the graph, and d is the number
of all distinct labels seen in the entire dataset. Thus, every
node has one row in the feature matrix associated with
it. We choose a random fixed ordering of all labels, and
then for a given node, to convert its label into its feature
row we assign all positions of the row to zero with the

Arakelyan et al. Cybersecurity (2021) 4:26 Page 6 of 14

Fig. 3 Here we show how redundant instructions were removed to contract the graph. On the left the graph is shown before the contraction, and
on the right it is demonstrated after the contraction

exception of the position that corresponds to the label of
the node in our fixed ordering of labels. This representa-
tion is known as a one-hot representation. We will further
refer to the feature matrix as X. Note that we use words
“feature” or “features”, “embeddings” and “representation”
interchangeably.

Graph convolutional networks
Themodel we used for learning representations is a Graph
Convolutional Neural Network (GCN) (Kipf and Welling
2017). Graph neural embeddings is a fast developing field,
and some alternative graph representation learning mod-
els include GraphSAGE (Hamilton et al. 2017) or Gated
Graph Neural Networks (Li et al. 2016) , as well as a
number of others. In the literature GCNs consistently per-
form on par or better than more recent variants of graph
neural networks (Monti et al. 2017; Liu et al. 2019; Velick-
ovic et al. 2017; Chen et al. 2018), while being simpler
and oftentimes, faster. We chose GCN because it pro-
vides a good trade-off between simplicity, performance,
and speed. The latter is important due to the low-level
nature of the binary code; it is reasonable to expect the
program graphs to grow quite large, which forces us to

favour a model with weight updates that can be efficiently
computed in batches.
GCN consists of a few stacked graph convolutional lay-

ers. A graph convolutional layer is applied simultaneously
to all nodes in the graph. For each node, it averages the fea-
tures of that node with features of its neighbours. Features
of different nodes are scaled differently in the process
of averaging and these weights are learned, i.e. they are
the parameters of the graph convolutional layer. After the
averaging, each node is assigned the resulting vector as its
new feature vector and we proceed to either apply a dif-
ferent graph convolutional layer, or compute the loss and
perform backpropagation to update the parameters.
Formally, this process of computing new feature vectors,

known as forward pass or propagation, for (l+1)-st graph
convolutional layer can be described as follows:

H(l+1) = ReLU
(
D

1
2 ÃD

1
2HlWl

)
(1)

where Ã is the adjacency matrix of the graph with added
self-loops, D is its diagonal out-degree matrix, ReLU(x) =
max(0, x) is the non-linearity or activation function, H(l)

Arakelyan et al. Cybersecurity (2021) 4:26 Page 7 of 14

is the result of propagation through previous layer, H(0)

beingX, andWl is a layer-specific trainable weight matrix.
Since one graph convolutional layer averages repre-

sentations of the immediate neighborhood of the node,
after performing k graph convolutions we incorporate the
information from k-th neighborhood of the node.
From our description, it follows that after the forward

pass, the graph convolutional network outputs features for
each node in the graph. We will refer to this new feature
matrix as Z. Note that Z still has n rows - one row per
node, but it can have a different number of columns.
To get the representation of the entire graph, we can

aggregate the features of all nodes in the graph. Here it
is possible to use any aggregation function - summation,
averaging, or even a neural attention mechanism, but in
our experiments we went for a simple sum aggregate. A
schematic illustration of this entire process is available in
Fig. 4.
The aggregated representation is used with a two-

layer perceptron, and passed through a softmax which
is defined like softmax(xi) = exp(xi)∑

i exp(xi)
, for the final

classification.
We frame our tasks as classification and use

cross-entropy error as the objective function for the
optimization. We cover our procedure for selecting
hyperparameters for GCN model in more detail in
“Task 1. experimental setup” section.

Baselines
We wanted to compare our proposed representation to
another task-independent representation, in particular, to
one that used code-based features or embeddings. We
experimented with Long Short Term Memory (LSTM)
neural networks and Support VectorMachine (SVM) clas-
sifiers for that purpose. We interpreted instructions as
words, and a sequence of instructions as a sentence, fol-
lowing a number of similar approaches in the field, e.g.
(Zuo et al. 2019). We experimented using both SVM and
LSTM with the assembly instructions directly, as well as
with the code lifted to VEX IR. From our experiments, an
SVM classifier with a Gaussian kernel and bag-of-words
representation of VEX IR gave us the best performance, so
that is the setup we chose as a baseline. Each line of IR is
tokenized to be a single “word”. Vocabulary for the bag-of-
words was obtained from the training part of the dataset.
We used frequency thresholding to remove infrequent
entries and reduce data sparsity. Those frequencies were
empirically found on the validation part of the dataset.

Task description
We evaluate the performance of our proposed represen-
tations on two independent tasks. In the first, we test
the proposed representations for functional algorithm

classification in binary executable programs through clas-
sifying coding challenges. In our second task, we want to
demonstrate the performance of learned representations
on a common security problem – discovery of vulnera-
ble compiled C/C++ files. The two tasks are semantically
different and we demonstrate in the later sections that
both can be successfully tackled with representations con-
structed and learned in the same way.

Task 1: Functional algorithm classification
Algorithm classification is crucial for semantic analysis
of code. We qualify it as “functional” by opposition to
“syntactic”, i.e., we aim to capture the semantics of func-
tional properties of algorithms. It can be used for creating
assisting tools for security researchers to understand and
analyze binary programs, or discover inefficient or buggy
algorithms, etc.
In this task, we are looking at real-world programs sub-

mitted by students to solve programming competition
problems. We chose such a dataset because the programs
in it, being written by different students, naturally encom-
pass more implementation variability than it would be
possible to get by using, for instance, standard library
implementations. Our goal is to classify solutions by the
problem prompts that the solution was written for.
We present a typical example of programming competi-

tion problem prompt in Table 1. Provided example is for
illustrative purposes only, as it is taken from ACM Timus
(http://acm.timus.ru) and is not part of our dataset2.
From our definition and the dataset, it follows that we

define the equivalence of two programs as them solving
the exact same problem. Hence, in this task, we test the
ability of the model to capture the higher-level semantic
similarity, and to take into account program behaviour,
functionality and complexity, while ignoring syntactic dif-
ferences wherever possible.

Task 2: vulnerability discovery
Software contains bugs, which in the worst case can
lead to weaknesses that leave vulnerable systems open to
attacks. Such security bugs, or vulnerabilities, are classi-
fied in a formal list of software weaknesses - Common
Weakness Enumeration (CWE). Vulnerability discovery is
the process of finding parts of vulnerable code that may
allow attackers to perform unauthorized actions. It is an
important problem for computer security. The typical tar-
get of vulnerability discovery is programming mistakes
accidentally introduced in benign commodity programs
by their authors. Our work excludes software specifi-
cally crafted to behave in a malicious way, and focuses
on benign programs. Due to the large variability among

2The dataset we used was collected as part of previous work for which the
problem prompts are not released with the data

http://acm.timus.ru

Arakelyan et al. Cybersecurity (2021) 4:26 Page 8 of 14

Fig. 4 Schematic depiction of obtaining a program representation with a single-layer GCN model

vulnerabilities, increasingly large sizes of software and
increasing costs of testing it, the problem of vulnerability
discovery is not solved.
Most vulnerability discovery techniques rely on

dynamic analysis for program exploration, the most
common one being fuzzing (Zalewski 2017). Such models
offer a high level of precision, at the cost of shallow
program coverage: only a subset of execution traces for
a given program (along with a set of input test cases)
can be observed in finite time, leaving large parts of the
program unexplored. On the other hand, static analysis
provides better program coverage at the cost of lower
precision. In addition to these challenges come a range
of fundamental problems in program analysis related to
undecidability (e.g., the halting problem, i.e., “Does the
program terminate on all inputs?”) and implementation.
These issues emerge because vulnerabilities may span
very small or very large chunks of code and involve a
range of different programmatic constructs. This raises
the question - at what level of granularity in the program
should we inspect them for vulnerabilities or report to
security researchers. In this work, we are concerned with
the question of learning representations for the entire
binary program that will help to discover vulnerabilities
statically, while leaving the questions of handling large
volumes of source code and working on variable levels of
granularity for future work. Our work builds on standard
binary-level techniques for control-flow recovery (i.e., the
reconstruction of a CFG), which is a well-studied problem

Table 1 An example prompt for programming competition
problems and their corresponding problem numbers and names.
The example is taken from ACM Timus http://acm.timus.ru/

Prompt Problem #

You have a number of stones with known weights
w1, . . .wn . Write a program that will rearrange the
stones into two piles such that weight difference
between the piles is minimal

1005. Stone Pile

where state-of-the-arts models perform well with high
accuracy and scalability (Andriesse et al. 2016).

Datasets and experimental setup
Our first dataset, introduced by Mou et al. (2016), con-
sists of 104 online judge competition problems and 500
C or C++ solutions for each problem submitted by stu-
dents. We only kept the files that could be successfully
compiled on a Debian operating system, using gcc8.3,
without any optimization flags. This left us with 49191
binary executable files, each belonging to one of 104
potential classes. Each class in this dataset corresponds
to a different problem prompt and our goal is to classify
the solutions according to their corresponding problem
prompts.
The second dataset we used is the Juliet C/C++ test suite

(Boland and Black 2012). This is a synthetically generated
dataset, that was created to facilitate research of vulnera-
bility scanners and enable benchmarking. The files in the
dataset are grouped by their vulnerability type – CWE-
ID. Each file consists of a minimal example to recreate
the vulnerability and/or its fixed version. Juliet test suite
has OMITGOOD and OMITBAD macros, surrounding
vulnerable and non-vulnerable functions correspondingly.
We compiled the dataset twice - once with each macro,
to generate binary executable files that contain vulnera-
bilities and those that do not. The dataset contains 90
different CWE-IDs. However, some of them consist of
Windows-only examples, that we omitted. Note that even
though our approach is not platform-specific, in this work
we limit our experimentation to Linux only.
Most CWE-IDs had too few examples to train a classi-

fier and/or to report any meaningful statistics on3. Thus,
we also omitted any CWE-ID that had less than 100 files
in its testing set after 70:15:15 for training:validation:test

3In the future, we consider combining some CWEs into their umbrella
categories, for example following the classification by Research Concepts:
https://cwe.mitre.org/data/definitions/1000.html

http://acm.timus.ru/
https://cwe.mitre.org/data/definitions/1000.html

Arakelyan et al. Cybersecurity (2021) 4:26 Page 9 of 14

split, because for those cases the reported evaluation met-
ric would be too noisy. As a result, we experimented on
vulnerabilities belonging to one of 30 different CWE-IDs,
presented in Table 2. We trained a separate classifier for
every individual CWE-ID, which was required because
files associated with each CWE-ID may or may not con-
tain other vulnerability types.
We trained the neural network model with early stop-

ping, where the number of training epochs was found on
the validation set.

Task 1. experimental setup
For experiments in the functional algorithm classification
task, we randomly split all the binaries in the first dataset
into train:test:validation sets with ratios 70:15:15. We use
the training set for training and extracting some addi-
tional helper structures, such as vocabulary for the bag
of words models and counting frequencies for threshold-
ing in neural network models. We use the validation set
for model selection and finding the best threshold values.
After finding the best model, we evaluate its performance
on the testing set. The experiments are cross-validated
and averaged over 5 random runs.
For SVMs, in the model selection phase, we perform a

grid-search over the penalty parameter C and pick a value
for the vocabulary threshold to remove any entry that does
not have a substantial presence in the training set to be
useful for learning. After the trimming our vocabulary
contains about 10-11K entries (the exact number changes
from one random run to another).
For GCN-based representation, we follow similar logic

and use the training set to find and remove infrequent
node labels. Here too the exact threshold is decided via
experimentation on the validation set. On average, we
keep about 7-8K different node labels. Very infrequent
terms are replaced with a placeholder UNK, or CONST if
it is a hexadecimal.
We pick hyperparameters of the GCN model by their

performance on the validation set. Figure 5 demonstrates
the influence of the depth (number of graph convolution
layers) and width (size of each graph convolution layer)
on the performance of the model for Task 1. Figure 5(A)
shows the peformance of models with depths from 1 to 8
layers, while the dimensionality of every layer is set to 64.
As it can be seen, increasing the depth of the model up
until 4 layers improves performance, however additional
layers after that do not always improve performance.
Figure 5(C) compares performances of four models where
each model has the same number of layers (3), but dif-
ferent sizes of layers - 32, 64, 128 or 256. From here we
see, that increasing the size of the layers from 64 to 128
provides a moderate improvement, but increasing the size
further does not affect the performance. Figures 5(B) and
(D) show the duration of training in seconds of each of

the discussed above models on 100 examples. Based on
these general findings we perform some additional exper-
imentation and deploy a GCN with 3 layers, that has 128
dimensions in its first two layers, and 64 dimensions in its
last layer.

Task 2. experimental setup
In the vulnerability discovery experiments, we train a sep-
arate classifier for each of 30 different CWE-IDs. Note,
that for each CWE-ID classifier in its training and test-
ing we only include the binaries that are specifically
marked as good or bad with regard to that CWE-ID.
For every CWE-ID, we split its corresponding binaries
into train:validation:test with ratios 70:15:15, and report
results averaged over 5 random runs. We use training sets
for training the models and validation sets for grid search
of the penalty parameter C in SVMs. We report the per-
formance of the best model measured on testing sets.
Here we reuse some statistics obtained on the first dataset,
in particular, we reuse frequency thresholds and bag-of-
words vocabularies. We need to train a separate classifier
for each CWE-ID, 30 SVM classifiers and 30 NN classi-
fiers in total, which would lead to a huge search space at
the phase of the model selection.
We are not aware of related work on vulnerability dis-

covery that performs their evaluation on Juliet Test Suite.
Thus, to give the readers a better understanding of how
our proposed model would fare compared to other exist-
ing approaches, we performed an additional experiment
using Asm2Vec model (Ding et al. 2019) on the Juliet Test
Suite. Asm2Vec is a clone search engine that relies on vec-
tor representations of assembly functions. In the original
paper the authors suggested its usefulness as a vulner-
ability detection tool which allows finding duplicates of
known vulnerable functions.We tried replicating that sce-
nario as faithfully as possible, by training Asm2Vec4 on
Juliet Test Suite, and comparing resulting representations
to differentiate between vulnerable and non-vulnerable
instances. Since Asm2Vec poses the vulnerability detec-
tion as a retrieval problem, we follow their example in
the paper and report Precision@15 metric. For each vul-
nerable function, we find 15 most similar functions to
it according to cosine similarity and compute the per-
centage of vulnerable functions among them. It is worth
noting that we are looking for similar functions among all
vulnerable and non-vulnerable functions per CWE-ID.
We set most of the hyperparameters of Asm2Vec fol-

lowing the original paper, but finetune for dimensionality
of the representation and learning rate. To find best values
for those we use grid search in intervals {50,100,150,200}
and {0.05, 0.025, 0.01} correspondingly. The final results

4We used implementation available here: https://github.com/Lancern/
asm2vec

https://github.com/Lancern/asm2vec
https://github.com/Lancern/asm2vec

Arakelyan et al. Cybersecurity (2021) 4:26 Page 10 of 14

Table 2 In this table we provide total counts of binary executables for each of the CWE-IDs we studied in the Juliet Test Suite

CWE-ID # examples CWE-ID # examples CWE-ID # examples

CWE121 9486 CWE197 2664 CWE476 888

CWE122 11946 CWE23 2960 CWE563 1116

CWE124 3612 CWE36 2960 CWE590 6954

CWE126 2639 CWE369 2736 CWE606 760

CWE127 3612 CWE400 2280 CWE617 918

CWE134 3800 CWE401 4176 CWE680 1776

CWE190 12093 CWE415 2588 CWE690 2368

CWE191 9048 CWE416 888 CWE758 1046

CWE194 3552 CWE427 740 CWE761 888

CWE195 3552 CWE457 2104 CWE762 6429

that we report for Asm2Vec are computed on the testing
set, and are the average of 5 random runs.

Evaluation and results
For evaluating performance in our experiments we used
accuracy following previous work that we proceed to
compare our results to.

Task 1
Table 3 contains quantitative evaluation of our representa-
tion for Task 1. Our proposed representation outperforms
our own SVM baseline, TBCNN model (Mou et al. 2016),
and current state-of-the-art for this task - inst2vec(Ben-
Nun et al. 2018). We manage to reduce the error by more
than 40%, thus setting a new state-of-the-art result. It

Fig. 5 Comparison of GCN models with different numbers of layers (A), and different sizes of each layer (C). (A) demonstrates the accuracy of GCN
models with different numbers of layers - from 1 to 8 - on the validation set of Task 1; the size of each layer is 64. (B) shows the time in seconds that
models from (A) take to train on 100 samples. (C) demonstrates the accuracy of GCN models with 3 layers, but different sizes of layers - from 32 to
256. (D) shows the time in seconds that models from (C) take to train on 100 samples

Arakelyan et al. Cybersecurity (2021) 4:26 Page 11 of 14

Table 3 Accuracy obtained for the first task on the online judge
problem classification

Model Accuracy

SVM on VEX IR 0.93

TBCNN (Mou et al. 2016) 0.94

inst2vec (Ben-Nun et al. 2018) 0.9483

Ours 0.97

should be additionally mentioned that both TBCNN and
inst2vec start from the C source code of the programs to
make predictions, whereas our baseline SVM and our pro-
posed model are only using compiled executable versions.
Highlighting a few important differences between our

approach and inst2vec helps better understanding some of
the contributions of our approach. To construct the con-
textual flow graphs, the authors of inst2vec compile the
source code to LLVM IR, which contains richer seman-
tic information than VEX IR that we use in this work.
Because it is more high-level, LLVM IR is a difficult target
for lifting from binary executable files5.
Another key difference is that instead of learning the

representations of individual tokens and then combining
the tokens into a program using a sequential model, we
learn the representations of all the tokens in the program
jointly, thus learning the representation of the entire pro-
gram. The inst2vec, on the other side, ignores the struc-
tural properties of the program at that step. Our results
show that we can achieve better performance, despite
inst2vec starting from a semantically richer LLVM IR. We
believe this indicates the importance of using the struc-
tural information at all stages of learning for obtaining
good program embeddings.

Task 2
Figure 6 contains the evaluation of our representation
for Task 2. Here, the classifier based on our proposed
representation outperforms our SVM baseline in all cases
except 2 – CWE-ID590, Free of Memory not on the Heap,
and CWE-ID761, Free of Pointer not at Start of Buffer.
In both cases we are seeing less than 5% difference in
accuracy. On the other hand, our proposed representation
demonstrates a significant gain in terms of performance.
In the extreme case of CWE-617, Reachable Assertion,
it outperforms the baseline by about 25%, in many other
cases the gain is from 10% to 20% of prediction accuracy.
Table 4 reports the results we obtained from running

Asm2Vec on Juliet Test Suite. It is important to keep in
mind that these numbers are not directly comparable to
our results, as they correspond to two different metrics.
Rather, this experiment demonstrates the complexity of

5More discussion on this topic is provided at Angr’s FAQ page: https://docs.
angr.io/introductory-errata/faq

the dataset and the capacity of Asm2Vec to capture vul-
nerabilities on it. While Bin2Vec achieves more than 80%
accuracy for all CWE-ID, Asm2Vec has Precision@15
equal to 0.5 or 0.6 in many cases, which means only about
half of the retrieved similar functions were in fact vul-
nerable. Asm2Vec has highest Precision@15 of 0.77 for
CWE-ID 416, Use After Free, which corresponds to about
1 in 4 retrieved functions being incorrectly labelled as vul-
nerable. For comparison, for the same vulnerability type
Bin2Vec achieves near perfect performance.
Additionally, we can indirectly compare our results for

the second task with those presented in two surveys
that use Juliet Test Suite as a benchmark for evaluating
commercial static analysis vulnerability discovery tools
(Velicheti et al. 2014; Goseva-Popstojanova and Perhin-
schi 2015). It must be noted, that the commercial tools
in those experiments probably did not use most of the
programs for each CWE-ID as a training set. Addition-
ally, the tools considered in those surveys are making
their predictions based on source code and not binaries.
Nevertheless, the comparison of the reported accuracies
in those surveys with ours tells us that our proposed
representation performs better for vulnerability discov-
ery than static analysis commercial tools. For example,
on CWE-IDs from 121 to 126, which are all memory
buffer errors, (Velicheti et al. 2014) report less than 60%
accuracy, whereas our model scores higher than 80% for
each of those CWE-IDs. For tools studied in Goseva-
Popstojanova and Perhinschi (2015), our model consis-
tently outperforms three out of four static analysis tools,
and for the last one it outperforms it by a considerable
margin in all cases but two. Those two are CWE-ID122,
Heap-based Buffer Overflow, where the commercial tool
scores a few percents higher, and CWE-ID590, Free of
Memory not on the Heap.
These results suggest that our representation has good

prospects to be used in vulnerability discovery tools. For
almost every vulnerability type our prediction accuracy
performance is better than 80% and for many it is higher
than 90%.

Discussion and future work
Software in production is usually complex and large, capa-
ble of performing many different functions in different
use cases. On the contrary, programs in our evaluation
datasets are single-purpose, solving a single task with a
relatively small number of steps. Additionally, the entirety
of each program in Juliet test suite is relevant to vulner-
ability discovery tasks, unlike real software where most
of the code is not vulnerable and only a small part of
it may have an issue. This can potentially be solved by
introducing representations that can be computed on dif-
ferent levels of coarseness. This is a non-trivial task, but
our findings hint that once completed we may be able to

https://docs.angr.io/introductory-errata/faq
https://docs.angr.io/introductory-errata/faq

Arakelyan et al. Cybersecurity (2021) 4:26 Page 12 of 14

Fig. 6 Experimental results for vulnerability discovery on the Juliet test suite

achieve far better results for different problems on pro-
duction software than is currently possible. Additionally,
we need to get a better understanding of what proper-
ties are captured with such a representation and how is
best to use those or how to add other desirable proper-
ties. Another challenge left for future work is extending
this approach to cross-architecture and cross-compiler
binaries.
There are several avenues for extending our work. First,

it will be interesting to see whether using recent exten-
sions of GCNs, such as the MixHop model (Abu-El-Haija
et al. 2019) that propagates information through higher-
order node neighbourhoods, will result in better per-
formance. Additionally, to test the utility of Bin2Vec in
real-world problems, we would like to apply it to analyze
more complex and larger-scale vulnerability datasets.

Conclusion
We introduced Bin2Vec, a new model for learning dis-
tributed representations of binary executable programs.

Table 4 Asm2vec Precision@15 on Juliet Test Suite

CWE-ID P@15 CWE-ID P@15 CWE-ID P@15

CWE121 0.72 CWE197 0.71 CWE476 0.73

CWE122 0.61 CWE23 0.68 CWE563 0.63

CWE124 0.63 CWE36 0.68 CWE590 0.64

CWE126 0.69 CWE369 0.54 CWE606 0.56

CWE127 0.66 CWE400 0.56 CWE617 0.64

CWE134 0.66 CWE401 0.50 CWE680 0.75

CWE190 0.53 CWE415 0.66 CWE690 0.55

CWE191 0.59 CWE416 0.77 CWE758 0.72

CWE194 0.71 CWE427 0.47 CWE761 0.55

CWE195 0.72 CWE457 0.69 CWE762 0.58

Our learned representation has strong potential to be used
in the context of a wide variety of binary analysis tasks.We
demonstrate this by putting our learned representations
to use for classification in two semantically different tasks
- algorithm classification and vulnerability discovery. We
show that for both tasks our proposed representation
achieves better qualitative and quantitative performance
in comparison to state-of-the-art approaches, including
inst2vec and common machine learning baselines.

Acknowledgements
Not applicable.

Authors’ contributions
C.H. and E.K. had the initial idea. Sh.Ar., C.H., E.K. and A.G. designed the study.
Sh.Ar., C.H. and E.K. came up with evaluation scenarios. Sh.Ar. and C.H. im-
plemented the solution. Sh.Ar. and A.G. designed machine learning
experiments. Sh.Ar. performed original experiments. Sh.Ar. and C.H. analyzed
the results and drafted the paper. A.G. and E.K. revised the draft. S.A performed
additional experimentation during revision. The author(s) read and approved
the final manuscript.

Funding
The authors are grateful for the funding to Information Sciences Institute of
University of Southern California.

Availability of data andmaterials
All of the data used in this study is publicly available.

Declarations

Competing interests
The authors declare that they have no competing interests.

Received: 5 May 2020 Accepted: 11 April 2021

References
Aafer Y, Du W, Yin H (2013) Droidapiminer: Mining api-level features for robust

malware detection in android. In: Zia TA, Zomaya AY, Varadharajan V, Mao
ZM (eds). Security and Privacy in Communication Networks - 9th
International ICST Conference, SecureComm 2013, Sydney, NSW, Australia,

Arakelyan et al. Cybersecurity (2021) 4:26 Page 13 of 14

September 25-28, 2013, Revised Selected Papers, Springer, vol 127.
pp 86–103. https://doi.org/10.1007/978-3-319-04283-1_6

Abu-El-Haija S, Perozzi B, Kapoor A, Alipourfard N, Lerman K, Harutyunyan H,
Steeg GV, Galstyan A (2019) MixHop: Higher-order graph convolutional
architectures via sparsified neighborhood mixing. PMLR Long Beach Calif
USA Proc Mach Learn Res 97:21–29

Allamanis M, Barr ET, Devanbu PT, Sutton CA (2018) A survey of machine
learning for big code and naturalness. ACM Comput Surv 51(4):81:1–81:37.
https://doi.org/10.1145/3212695

Andriesse D, Chen X, van der Veen V, Slowinska A, Bos H (2016) An in-depth
analysis of disassembly on full-scale x86/x64 binaries. In: USENIX. In:
USENIX Association, Austin. https://www.usenix.org/conference/
usenixsecurity16/technical-sessions/presentation/andriesse

Ben-Nun T, Jakobovits AS, Hoefler T (2018) Neural code comprehension: A
learnable representation of code semantics. In: Bengio S, Wallach HM,
Larochelle H, Grauman K, Cesa-Bianchi N, Garnett R (eds). Advances in
Neural Information Processing Systems 31: Annual Conference on Neural
Information Processing Systems 2018, NeurIPS 2018, 3-8 December, 2018,
Montréal, Canada. pp 3589–3601. http://papers.nips.cc/paper/7617-
neural-code-comprehension-a-learnable-representation-of-code-
semantics

(2017) 5th International Conference on Learning Representations, ICLR 2017,
Toulon, France, April 24-26, 2017, Conference Track Proceedings,
OpenReview.net(Bengio Y, LeCun Y, eds.) https://openreview.net/group?
id=ICLR.cc/2017/conference

Boland T, Black PE (2012) Juliet 1.1 C/C++ and java test suite. IEEE Comput
45(10):88–90. https://doi.org/10.1109/MC.2012.345

Cha SK, Avgerinos T, Rebert A, Brumley D (2012) Unleashing mayhem on
binary code. In: IEEE Symposium on Security and Privacy, SP 2012, 21-23
May, 2012, San Francisco, California, USA, IEEE Computer Society.
pp 380–394. https://doi.org/10.1109/SP.2012.31

Chen J, Ma T, Xiao C (2018) Fastgcn: Fast learning with graph convolutional
networks via importance sampling. In: 6th International Conference on
Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 -
May 3, 2018, Conference Track Proceedings, OpenReview.net. https://
openreview.net/forum?id=rytstxWAW

Ding SHH, Fung BCM, Charland P (2019) Asm2vec: Boosting static
representation robustness for binary clone search against code
obfuscation and compiler optimization. In: 2019 IEEE Symposium on
Security and Privacy, SP 2019, San Francisco, CA, USA, May 19-23, 2019,
IEEE. pp 472–489. https://doi.org/10.1109/SP.2019.00003

Eschweiler S, Yakdan K, Gerhards-Padilla E (2016) discovre: Efficient
cross-architecture identification of bugs in binary code. In: 23rd Annual
Network and Distributed System Security Symposium, NDSS 2016, San
Diego, California, USA, February 21-24, 2016, The Internet Society. http://
wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2017/09/
discovre-efficient-cross-architecture-identification-bugs-binary-code.pdf

Feng Q, Zhou R, Xu C, Cheng Y, Testa B, Yin H (2016) Scalable graph-based bug
search for firmware images. In: Weippl ER, Katzenbeisser S, Kruegel C,
Myers AC, Halevi S (eds). Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, Vienna, Austria, October
24-28, 2016. ACM. pp 480–491. https://doi.org/10.1145/2976749.2978370

Goseva-Popstojanova K, Perhinschi A (2015) On the capability of static code
analysis to detect security vulnerabilities. Inform Softw Technol 68:18–33.
https://doi.org/10.1016/j.infsof.2015.08.002

Grieco G, Grinblat GL, Uzal LC, Rawat S, Feist J, Mounier L (2016) Toward
large-scale vulnerability discovery using machine learning. In: Bertino E,
Sandhu R, Pretschner A (eds). Proceedings of the Sixth ACM on Conference
on Data and Application Security and Privacy, CODASPY 2016, New
Orleans, LA, USA, March 9-11, 2016. ACM. pp 85–96. https://doi.org/10.
1145/2857705.2857720

(2017) Advances in Neural Information Processing Systems 30: Annual
Conference on Neural Information Processing Systems 2017, 4-9
December 2017(Guyon I, von Luxburg U, Bengio S, Wallach HM, Fergus R,
Vishwanathan SVN, Garnett R, eds.), Long Beach

Hamilton WL, Ying Z, Leskovec J (2017) Inductive representation learning on
large graphs. In: (Guyon et al. 2017). pp 1024–1034. http://papers.nips.cc/
paper/6703-inductive-representation-learning-on-large-graphs

He J, Ivanov P, Tsankov P, Raychev V, VechevMT (2018) Debin: Predicting debug
information in stripped binaries. In: Lie D, Mannan M, Backes M, Wang X
(eds). Proceedings of the 2018 ACM SIGSAC Conference on Computer and

Communications Security, CCS 2018, Toronto, ON, Canada, October 15-19,
2018. ACM. pp 1667–1680. https://doi.org/10.1145/3243734.3243866

Hindle A, Barr ET, Gabel M, Su Z, Devanbu PT (2016) On the naturalness of
software. Commun ACM 59(5):122–131. https://doi.org/10.1145/2902362

Kang B, Yerima SY, Sezer S, McLaughlin K (2016) N-gram opcode analysis for
android malware detection. IJCSA 1(1):231–255. https://doi.org/10.22619/
ijcsa.2016.1001011

Karbab EB, Debbabi M, Derhab A, Mouheb D (2018) Maldozer: Automatic
framework for android malware detection using deep learning. Digit Inv
24:S48—S59. https://doi.org/10.1016/j.diin.2018.01.007

Kipf TN, Welling M (2017) Semi-supervised classification with graph
convolutional networks. In: (Bengio and LeCun 2017). https://openreview.
net/forum?id=SJU4ayYgl

Kolosnjaji B, Zarras A, Webster GD, Eckert C (2016) Deep learning for
classification of malware system call sequences. In: Kang BH, Bai Q (eds). AI
2016: Advances in Artificial Intelligence - 29th Australasian Joint
Conference, Hobart, TAS, Australia, December 5-8, 2016, Proceedings,
Springer, Lecture Notes in Computer Science, vol. 9992. pp 137–149.
https://doi.org/10.1007/978-3-319-50127-7_11

Lee T, Choi B, Shin Y, Kwak J (2018) Automatic malware mutant detection and
group classification based on the n-gram and clustering coefficient. J
Supercomput 74(8):3489–3503. https://doi.org/10.1007/s11227-015-1594-
6

Li Y, Gu C, Dullien T, Vinyals O, Kohli P (2019b) Graph matching networks for
learning the similarity of graph structured objects. In: Chaudhuri K,
Salakhutdinov R (eds). Proceedings of the 36th International Conference
on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California,
USA, PMLR, Proceedings of Machine Learning Research, vol. 97.
pp 3835–3845. http://proceedings.mlr.press/v97/li19d.html

Li Y, Tarlow D, Brockschmidt M, Zemel RS (2016) Gated graph sequence neural
networks. In: Bengio Y, LeCun Y (eds). 4th International Conference on
Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016,
Conference Track Proceedings. http://arxiv.org/abs/1511.05493

Li B, Zhang Y, Yao J, Yin T (2019a) MDBA: detecting malware based on bytes
n-gram with association mining. In: 26th International Conference on
Telecommunications, ICT 2019, Hanoi, Vietnam, April 8-10, 2019. IEEE.
pp 227–232. https://doi.org/10.1109/ICT.2019.8798828

Li Z, Zou D, Xu S, Ou X, Jin H, Wang S, Deng Z, Zhong Y (2018) Vuldeepecker: A
deep learning-based system for vulnerability detection. In: 25th Annual
Network and Distributed System Security Symposium, NDSS 2018, San
Diego, California, USA, February 18-21, 2018, The Internet Society. http://
wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/02/
ndss2018_03A-2_Li_paper.pdf

Lin Z, Feng M, dos Santos CN, Yu M, Xiang B, Zhou B, Bengio Y (2017b) A
structured self-attentive sentence embedding. In: (Bengio and LeCun
2017). https://openreview.net/forum?id=BJC_jUqxe

Lin G, Zhang J, Luo W, Pan L, Xiang Y (2017a) POSTER: vulnerability discovery
with function representation learning from unlabeled projects. In:
(Thuraisingham et al. 2017). pp 2539–2541. https://doi.org/10.1145/
3133956.3138840

Liu Z, Chen C, Li L, Zhou J, Li X, Song L, Qi Y (2019) Geniepath: Graph neural
networks with adaptive receptive paths. In: The Thirty-Third AAAI
Conference on Artificial Intelligence, AAAI 2019, The Thirty-First Innovative
Applications of Artificial Intelligence Conference, IAAI 2019, The Ninth
AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI
2019, Honolulu, Hawaii, USA, January 27 - February 1, 2019. AAAI Press.
pp 4424–4431. https://doi.org/10.1609/aaai.v33i01.33014424

Mikolov T, Chen K, Corrado G, Dean J (2013a) Efficient estimation of word
representations in vector space. In: Bengio Y, LeCun Y (eds). 1st
International Conference on Learning Representations, ICLR 2013,
Scottsdale, Arizona, USA, May 2-4, 2013, Workshop Track Proceedings.
http://arxiv.org/abs/1301.3781

Mikolov T, Sutskever I, Chen K, Corrado GS, Dean J (2013b) Distributed
representations of words and phrases and their compositionality. In:
Burges CJC, Bottou L, Ghahramani Z, Weinberger KQ (eds). Advances in
Neural Information Processing Systems 26: 27th Annual Conference on
Neural Information Processing Systems 2013. Proceedings of a meeting
held December 5-8 2013, Lake Tahoe, Nevada, United States.
pp 3111–3119. http://papers.nips.cc/paper/5021-distributed-
representations-of-words-and-phrases-and-their-compositionality

https://doi.org/10.1007/978-3-319-04283-1_6
https://doi.org/10.1145/3212695
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/andriesse
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/andriesse
http://papers.nips.cc/paper/7617-neural-code-comprehension-a-learnable-representation-of-code-semantics
http://papers.nips.cc/paper/7617-neural-code-comprehension-a-learnable-representation-of-code-semantics
http://papers.nips.cc/paper/7617-neural-code-comprehension-a-learnable-representation-of-code-semantics
https://openreview.net/group?id=ICLR.cc/2017/conference
https://openreview.net/group?id=ICLR.cc/2017/conference
https://doi.org/10.1109/MC.2012.345
https://doi.org/10.1109/SP.2012.31
https://openreview.net/forum?id=rytstxWAW
https://openreview.net/forum?id=rytstxWAW
https://doi.org/10.1109/SP.2019.00003
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2017/09/discovre-efficient-cross-architecture-identification-bugs-binary-code.pdf
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2017/09/discovre-efficient-cross-architecture-identification-bugs-binary-code.pdf
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2017/09/discovre-efficient-cross-architecture-identification-bugs-binary-code.pdf
https://doi.org/10.1145/2976749.2978370
https://doi.org/10.1016/j.infsof.2015.08.002
https://doi.org/10.1145/2857705.2857720
https://doi.org/10.1145/2857705.2857720
http://papers.nips.cc/paper/6703-inductive-representation-learning-on-large-graphs
http://papers.nips.cc/paper/6703-inductive-representation-learning-on-large-graphs
https://doi.org/10.1145/3243734.3243866
https://doi.org/10.1145/2902362
https://doi.org/10.22619/ijcsa.2016.1001011
https://doi.org/10.22619/ijcsa.2016.1001011
https://doi.org/10.1016/j.diin.2018.01.007
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://doi.org/10.1007/978-3-319-50127-7_11
https://doi.org/10.1007/s11227-015-1594-6
https://doi.org/10.1007/s11227-015-1594-6
http://proceedings.mlr.press/v97/li19d.html
http://arxiv.org/abs/1511.05493
https://doi.org/10.1109/ICT.2019.8798828
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/02/ndss2018_03A-2_Li_paper.pdf
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/02/ndss2018_03A-2_Li_paper.pdf
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/02/ndss2018_03A-2_Li_paper.pdf
https://openreview.net/forum?id=BJC_jUqxe

