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Abstract

Long-term prediction is still a difficult problem in data mining. People usually use various kinds of methods of
Recurrent Neural Network to predict. However, with the increase of the prediction step, the accuracy of prediction
decreases rapidly. In order to improve the accuracy of long-term prediction,we propose a framework Variational
Auto-Encoder Conditional Generative Adversarial Network(VAECGAN). Our model is divided into three parts. The first
part is the encoder net, which can encode the exogenous sequence into latent space vectors and fully save the
information carried by the exogenous sequence. The second part is the generator net which is responsible for
generating prediction data. In the third part, the discriminator net is used to classify and feedback, adjust data
generation and improve prediction accuracy. Finally, extensive empirical studies tested with five real-world datasets
(NASDAQ, SML, Energy, EEGKDDCUP)demonstrate the effectiveness and robustness of our proposed approach.
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Introduction

As countries around the world strengthen the construc-
tion of modern information infrastructure and promote
the development of big data and the Internet of things,
more and more information are collected by us through
sensor devices.The security of network data has gradu-
ally become an important problem. Network managers
deploy a large number of security equipments in the net-
work to prevent various attacks. In order to enhance
the security of the network, more and more researchers
are also involved in the network security situation anal-
ysis technology. Among them, the prediction technology
of time series data can effectively evaluate and measure
the potential threats in the network. Through this tech-
nology, the system can be used for analysis, prediction,
decision-making and control, such as automatic allocation
of resources in the network, network attack early warning
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(Qu et al. 2005), security situation prediction (Liu et al.
2021), anomaly detection (Li et al. 2019) and so on.

In recent years, ANNs have been widely used in time
series prediction. Users do not need to specify the func-
tion form of independent variables and dependent vari-
ables when building Artificial Neural Networks(ANNs). It
can use back propagation algorithm to estimate param-
eters. Theoretically, it can generate any complex contin-
uous function. Among them, Recurrent Neural Network
(RNN) and sequence-to-sequence models (Sutskever et al.
2014) have achieved great success in the field of sequence
data, and also attracted the attention of researchers. RNN
adopts a chain structure to simulate the dynamic behav-
ior of time series and retains the long-term pattern of
time series through gate-like structures. At present, more
and more people use RNNs for time series prediction,
including Long Short-Term Memory (LSTM) (Hochreiter
and Schmidhuber 1997) and Gated Recurrent Unit (GRU)
(Cho et al. 2014). Several studies have shown success with
variants of these models (Zhu and Laptev 2017; Laptev et
al. 2017; Maddix et al. 2018).
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In software engineering projects, long-term forecasting
is particularly important for system requirement man-
agement, storage maintenance and scheduling planning.
Multi-step ahead prediction refers to the prediction of
multiple time steps in the future for a variable based on
the past and present data. Specifically, real-world applica-
tions often entail a mixture of short-term and long-term
repeating patterns. The related research on the long-term
prediction of time series mainly focuses on the trend
prediction. A hybrid neural network is proposed to pre-
dict the trend of time series (Lin et al. 2017). In some
practical applications, people try to predict the trend of
stock price(Xu and Cohen 2018). However, these algo-
rithms do not make full use of the information provided
by exogenous (driving) sequences. Yao (Qin et al. 2017)
and Liu (Liu et al. 2020) proposed a neural network archi-
tecture based on the encoder-decoder network to solve
the problem. However, with the increasement of predic-
tion step, the complexity of prediction is improved and
the prediction accuracy decreases. Zhang et al. (2019)
tried to use Generative Adversarial Network (GAN) archi-
tecture to solve the prediction problem. He proposed a
GAN neural network model with Multi-Layer Percep-
tron (MLP) as a discriminator network and LSTM as
a generator network for financial forecasting. However,
these methods are based on the recursive application of
single-step prediction model for multi-step prediction. If
there are errors in prediction, such errors will continue
to accumulate. In general, we are facing a challenge: the
task of using observed time series in the past to pre-
dict the unknown time series in long-term prediction—
the larger the prediction steps are, the harder the
problem is.

In order to cope with the above challenge, we propose
VAECGAN (Variational Auto-Encoder Conditional Gen-
erative Adversarial Network). We use the encoder of VAE
to encode the data driving series into lantern space and
provide it to the generator, so that the lantern space is
no longer random noise, and can contain part of the data
information in the driving series. In the generation stage,
LSTM and attention are used to generate prediction data
that has the same time trend as the past data. In the dis-
crimination stage, convolution layers are mainly used to
extract data features and discriminate between the gener-
ated data and the true data. The main contributions of this
paper are as follows:

(1) A framework VAECGAN is introduced for the
long-term prediction. In the model, the encoder of
VAE encodes the driving series into lantern space, so
that the lantern space contains part of the series data
information in the driving series. The CGAN module
can improve the ability of the VAE module to
generate time series data.
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(2) We propose a dynamic weights clipping method. The
dynamic weights clipping makes the discriminator
more stable. Experiments in section 5 also prove the
effectiveness of the clipping.

The remainder of this paper is organized as follows:
“Related work” section introduces the related background
and the basic idea of our work. “Problem statement”
section describes the problem statement in the paper. In
“The VAECGAN model” section, we present the detail of
our model, including the Encoder network, the Genera-
tor network and the Discriminator network. Experiments
are given in “Experiment” section. We conclude our work
and give a glimpse of the future work in “Conclusion and
future work” section.

Related work

In recent years, multiple studies have straightfor-
wardly inherited the GAN framework within the tem-
poral setting. Mogren proposed a Recurrent Neural
Network architecture, Continuous-RNN-GAN(C-RNN-
GAN) (Mogren 2016), which uses confrontation train-
ing to simulate the whole joint probability of sequence
and generate data sequence. This model is demonstrated
by training classical music sequences in midi format.
Recurrent Conditional GAN (RCGAN) (Esteban et al.
2017) model is a medical data generation framework.
This model follows the architecture of the traditional
GAN model, in which the generator and discriminator
can be replaced by RNN. Therefore, the RCGAN model
can generate real value sequence data limited by some
input conditions. EEGGAN (Hartmann et al. 2018) is a
framework for generating brain signals. They improve the
Wasserstein-GAN model to stabilize training and investi-
gate a range of architectural choices critical for time series
generation (most notably up and down sampling). EEG-
GAN opens up new possibilities for new applications, not
only for data enhancement, but also for spatial or tempo-
ral oversampling (proposed by Corley and Huang in 2018)
or recovery of damaged signals. Time-series Generative
Adversarial Networks (Yoon et al. 2019) is also a data gen-
eration approach, which generating realistic time-series
data that combines the flexibility of the unsupervised
paradigm with the control afforded by supervised train-
ing. But all these works are to generate data with the same
time trend, not to predict the future data.

In some studies, representation learning is commonly
used to deal with the compact encodings in prediction
tasks. Therefore, several works have explored the bene-
fit of combining autoencoders with adversarial training.
Larsen et al. (2015) is proposed for learning similarity
measures. Makhzani et al. (2015) is proposed for improv-
ing generative capability. But all these works are applied to
image generation, not data generation.
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By contrast, we choose Conditional GAN (CGAN)
(Mirza and Osindero 2014) as our basic framework,
but compared with CGAN, we code the exogenous
sequence of temporal data through the Variational Auto-
encoder(VAE) network instead of random noise as the
input of generator. In the encoder stage, we input the
exogenous sequence data, adjust the data weight through
the attention mechanism, and encode it with the LSTM
network. In the stage of decoder and generator, we use
encode results as lantern space and target sequence data
as label input to the network, and decode(generate) data
through LSTM and attention function. In the discrimi-
nation stage, we get the characteristics of data through
convolution layers and optimize the discriminator net-
work in a dynamic way. The framework is shown in
Fig. 1.

Problem statement

Based on the concept of adversarial training, GAN is
a deep learning framework that generates data through
game learning. It can learn any complex probability dis-
tribution in theory. Because GAN can produce high qual-
ity images, it has achieved great success in the field of
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image generation.The essence of GAN is to generate data
consistent with the distribution of real data. Long term
forecasting also generates a series future data with simi-
lar characteristics to the current data. This inspires us to
apply GAN to time series distribution learning for gener-
ating future time distribution. But if the prediction data
is generated directly from the random noise Z, the qual-
ity is not very good. We use the VAE model to encode
the exogenous sequence of data from the original distribu-
tion to a normal distribution, so the latent space contains
the exogenous sequence information of data. Meanwhile,
the Decoder net is not only used for decoding, but also
can be used as a Generator network.As we can see,xk =
(x/f, xé, ...,xlji) e RT represents the driving series of length
T and the x; = (x;,%2,..,%/) € R" denotes a vector of
n driving series at time ¢.Self-attention is used to process
the driving series x; so that the weights among the driving
series can be captured at time . Meanwhile, the input-
attention mechanism is also adaptively used to select the
time correlation of the driving series x*. Then we can see
from Fig. 1, LSTM function process the calculation of
the self-attention and input-attention and get the result as
latent space z.

Multivariate Time Driving Series
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Fig. 1 The Architecture of The VAECGAN model
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Z = E(X1,%2, ey XT) (1)

WhereE(-)is the Encoder network. We put the target
sequence and lantern space into the Generator net to gen-
erate the target sequence. Then, given T target value,
i.e,Y = (91,92, -..¥1) € R, where T is the length of win-
dow size we define. Y denotes all target series during
the past T time step. In the Generator (Decoder) stage,
the temporal-attention mechanism is used to automati-
cally select the time steps of the result of the encoder.
Then the prediction value Vv = VT4 1, YT 429 o YT +e)
will be calculated with the lantern space Z and target
series Y. Given the previous reading, predict the target
series .

5 =F0152091,2) @

Where F(-) is the nonlinear function.€ represents the pre-
diction time steps. In order to get better prediction results,
we use the real value Y = (y741,y1+42, .- ¥T+¢) and pre-
diction value y to train the Discriminator net, and add
category labels L = (L141,L7142, ..., LT+¢) as conditional
variables to guide the Discriminator net. Specifically, the
Discriminator is trained to minimize the average negative
least square between its predictions per time-step and the
labels of the sequence.

Dloss = LS(CNN(}’), L) (3)

Where LS(-) is the east square function. L is a vector of
1s,0r Os for sequence. The generator is trained to ‘trick’ the
discriminator into classifying its outputs as the true data,
that is, it hopes to minimize the least square between the
discriminator’s predictions on generated sequences and
the ‘true’ label, the vector of 1s (we write as 1).

Gloss = Dloss(CNN(Z); 1) (4')

The VAECGAN model

The VAECGAN model is composed of three networks,
the encoder network, the generator network and the dis-
criminator network. Figure 2 shows the architecture of
the three parts. The encoder network processes the driv-
ing series and generates the lantern space which can keep
the relationship information. The generator network use
lantern space and target series to generate prediction
series. The discriminator network classifies data into real
and fake.

The Enocoder network

The encoder network is composed of input attention,
self-attention and LSTM network. Figure 2a shows the
encoder architecture. In time series prediction, long
sequence input is not friendly to the Encoder-Decoder
model, so we can better predict the target value by extract-
ing important information of driving series through input-
attention. Given T input series xk = (xlf,xlz‘, ...,ka) e RT,
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T is the time window. We can compute the attention
weight by the following formula(5) and formula (6).

ef = vl tanh(We[ hy_1;50-1] +Uex") (5)

ok — exp(e)
t -_— T
> i expley)
Where v, € RT, W, € RT*2" and U, € RT*T are param-
eters to learn.aX is the attention weigh at time ¢. Then a
SoftMax function ensures the attention weights sum to 1.
In order to extract the series adaptively, we multiply the
attention weight with the temporal series by the following
formula(7).

(6)

&= (alfx’f,algxlz‘,..., a§x§> (7)
Self-attention has been used to study tex-
tual representation and achieved great success

(Vaswani et al. 2017; Yin et al. 2020). In this paper,
self-attention dynamically adjusts the importance of
the driving series, which makes unique adjustment
coefficients for each driving series. Introduce an
attention layer with an attention matrix capture the
similarity of any token with respect to all neighboring
tokens in an input sequence. Given the input driving
series &, = (x},x7,..,x5) , the attention mechanism is
implemented as follows:

& = tanh(Wyx; + by) (8)

&f = Sigmoid(Wyg: + bs) ©)

Where Wy € R” and W, € RT*™ are parameters to
learn.b, and b, are the bias vectors. Then we multiply the
attention weight coefficients with the attribute of driving
series for showing the different importance of the different
attributes of the driving series.

2,2 kK

=2 1.1 T
¥ = (oztxt,atxt,...,atxt> (10)

Since %2 will concatenate on %!, we take the transpose of
%* to make them have the same shape.

After calculating self-attention and input-attention, we
feed the result as lantern space by using f; function which
is an LSTM unit.

I = filhy %) (11)
i} = fi(h}_y, &) (12)
Z =[h};h}] (13)

Where [ 1}; 1] is the concatenate of the two hidden states.
And Z is the input for the generator net.
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Fig. 2 The Architecture of The Encoder Network(a), Generator Network(b) and Discriminator Network(c)

The generator network

The generator network is composed of a sequential atten-
tion mechanism and LSTM network. Figure 2b shows the
network framework. Then temporal attention is employed
to adaptively select the hidden state of all time steps
related encoder. The attention weight ¢ of each time step
¢ is calculated by the previous hidden state d;_; and the
cell state of the LSTM units;_; .

I = v tanh(Wyl dp—1;s, 1] +UaZ) (14)
. (15)
_1 exp(l/t)

Where [d;_1;s,_,] € R represents the concatenation of
previous hidden state d;_; and cell state of the LSTM unit
S,_1 va € R, Wy € R™ and Uy € R™ ™ are param-
eters to learn. The context vector ¢; is computed by the
following formula(16).

T-1
=) hZ
=1

Then the context vectors ¢;_; is combined with the given
target series y;_1.The calculation formula (17) is given
below.

(16)

5t = Wrlye—1;ce1] +b (17)

Where [y,_1;¢;-1] € R™! represents the concatenation
of the target series y;—1 and the weighted sum context vec-
tors c;_1 .W € R and b € R are the parameters. An

LSTM unit can be used for updating the decoder hidden
state d; at time t. The calculation formula (18) is given
below.

di = fildi—1,¥:-1)

The temporal dependence can be captured with the LSTM
unit fi.

(18)

The discriminator network

Figure 2c shows the Discriminator architecture. The dis-
criminator network consists of convolutional neural net-
work layers and a sigmoid activation function layer. The
convolutional network is mainly composed of three 1-D
convolution layers, which can better capture the interest-
ing features and discriminate the real data from generated
data.

In the GAN model, the discriminator network is mainly
used to judge whether the input data is real data or gener-
ated data. It needs to adjust its parameters to give accurate
judgment as much as possible. At the same time, the gen-
erator network is mainly used to generate data, which
can simulate the real data as much as possible to con-
fuse the discriminator network. The LSGAN model (Mao
et al. 2017) proposed the least square method as the loss
method, which can change the shortcomings of data qual-
ity is not high in the traditional GAN. Generally, taking
cross entropy as the loss function makes the generator not
optimize the data which judged as true by the discrim-
inator network, even if the data does not fully conform
to the trend of real data. Why does this phenomenon
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Table 1 The MAE and RMSE indexes of time series prediciton over the five datasets(e=50)

Models SML2020 NASDAQ100 Energy EEG KDDCUP
LSTM 0.7924 0.4362 1.3416 0.3977 0.3556
0.7145 0.3389 0.5968 04304 0.3928
Seq2Seq 0.7594 0.3491 1.2385 02814 03014
0.6451 0.3369 0.6147 03816 0.3684
DARNN 05134 0.1554 1.1561 0.2951 0.2579
0.3938 0.2881 0.5912 03817 03177
TCN 0.5614 0.0993 1.1154 0.2411 0.1935
0.4989 02412 0.5983 0.3591 0.2881
DSTPRNN 0.3254 0.1217 1.0471 0.2589 0.1753
0.2589 0.2621 0.5477 0.3127 0.1829
VAE 04388 0.1898 12378 0.2426 0.2253
04136 02716 0.5471 0.3802 0.2968
VAECGAN 0.3115 0.0579 0.8294 0.2193 0.1654
0.1638 0.1911 0.4516 0.3452 0.1901
happen? The main reason is that the generator network H}Din] (D) =

has completed its goal that confused the discriminator
network as much as possible, so the cross entropy loss
is very small at this time and cannot continue to opti-
mize. The least square method is different. It is possible
to further reduce the least square loss, so the generator
network still generates data more like real data under the
premise of confusing the discriminator network. Mean-
while, the least square method can also make the process
of GAN training more stable. Therefore, we think that
using the least square method as the loss function can
effectively improve the quality and stability of the gener-
ated data. The expression of the least square loss function
is as follows:

min 2 Ex-, (D) — al’ +12E,[DG@) b (19)

mgnf(G) = Hgn %Ezwz[D(G(Z)) —c]? (20)
D(-) represents the discriminator network,G(-) represents
the generator network. The input series data generate
lantern space Z by Encoder network. The constants a (1)
represent the real data label, and the constants b (0) rep-
resents the generated data label. The constants c (1) is the
value for the discriminator to judge the generated data is
the real data.

Table 2 The MAE and RMSE indexes of time series prediciton over the five datasets(e=120)

Models SML2020 NASDAQ100 Energy EEG KDDCUP
LSTM 0.8015 04751 13270 04091 04174
0.7023 04635 0.8197 04933 0.5352
Seq2Seq 0.8012 0.3921 13653 0.3674 04228
0.6974 04562 0.8214 0.5017 04811
DARNN 0.5327 03393 1.2671 0.3298 03973
0.5526 0.4074 0.7489 0.4666 03596
TCN 0.5387 0.2565 1.1232 02713 0.2667
0.5001 0.3672 0.6152 0.3938 0.3231
DSTPRNN 0.4543 0.2285 1.0910 0.2821 0.2588
04109 0.3613 0.6457 0.3667 03182
VAE 0.5879 0.2915 12218 03017 0.2884
0.5454 04237 0.7322 04511 0.3469
VAECGAN 0.4499 0.2193 0.8411 0.2562 0.2418
0.3965 03782 0.6267 0.3599 0.3118
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In WGAN(Arjovsky et al. 2017),in order to satisfy Lips-
chitz condition, weight clipping is used to limit the weight
of the whole network to a certain range(c=0.01).This
method has been proved to be simple and has good per-
formance. But this method produces some problems, that
is, weight clipping also limits the performance of the net-
work, and it is difficult to simulate complex functions. In

addition, inappropriate setting of weight clipping range
will also cause the gradient disappearance problem. Only
when the setting of the weight clipping range is appropri-
ate, can a suitable gradient value be returned. Therefore,
this paper uses dynamic clipping strategy to solve this
problem. Firstly, the weight value of the whole network
is obtained. Then the weight values of the first 6 precent

NASDAQ DATASET

—8— VAECGAN
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Fig. 4 MAE vs. Length of Prediction Timesteps(e) over NASDAQ (a) and SML(b) Datasets
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and the last 6 precent are calculated, Last,the weight val-
ues are used as the dividing line for clipping. Algorithm 1
describes the training process of VAECGAN.

Algorithm 1: VAECGAN training process. The VAE
model consists of the Encoder network and the
Decoder(generator) network. The GAN model con-
sists of the Generator network and the Discriminator
network.
Require: 0, the clipping threshold. TrueData, the
real-world data.
o, the weight in discriminator net. Truelabel, a vector
of 1s.
Fakedata, a vector of Os.
For i in ganepoch do:
Latern<-VAE.Encoder
Fakedata<-GAN.Genertator
For 7 in Dispoch do:
DlossTrue <~ GAN.Discriminator.Train(Truedata,
Truelabel)
DlossFake<—GAN.Discriminator.Train(Fakedata,
Fakelabel)
w <« clip(w, [0 X len(w)],w[ (1 —0) X len(w)])
End for
For 7 in Genpoch do:
Gloss<— GAN.Genertator. Train(Truelabel)
End for
For 7 in Vaepoch do:
VAE.Train()
End for
End for

Experiment

In order to evaluate the effectiveness of our model, we
conduct experiments on five public datasets. The param-
eters setting of our proposed VAECGAN model and the
evaluation metrics are introduced. Then, we adopt five
different baseline models for comparison. Moreover, we
show the comparison results between VAECGAN and
other baselines and study the parameter sensitivity of the
clipping threshold.

Data sets

SML2010 Data Set (SML)(SML2010 2014): The dataset
is collected from a monitor system mounted in a domestic
house. The data were sampled every minute, comput-
ing and uploading it smoothed with 15-min means. In
our experience, the target value is the indoor temper-
ature(room), and 18 other features are selected as the
driving series.
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NASDAQ 100 Data Set (NASDAQ)(NASDAQ100
2017): The subset of the entire nasdaql00 stock dataset
includes 81 major corporations and interpolates the miss-
ing data with linear interpolation. The index value of
nasdaql00 is used as the target series. These data include
105 days of inventory data from July 26 to December 22
in the 2016 year. Each day contains 390 data points except
for 210 data points on November 25 and 180 data points
on December 22 which is collected minute-by-minute. In
our experience, the last column is the target series and the
other 80 columns are driving series.

Appliances energy prediction Data Set(Energy)
(Candanedo Ibarra et al. 2017): The dataset is at 10
min for about 4.5 months. In our experiment, we employ
appliances energy use as the target series, delete the
date attribute, and employ other attributes as driving
series.

EEG Steady-State Visual Evoked Potential Signals
Data Set(EEG)(EEG 2018): This dataset consists of 30
subjects performing Brain Computer Interface for Steady
State Visual Evoked Potentials (BCI-SSVEP), and we only
use the visual image search dataset from the first subject.
In our experiment, we use O1 as the target value and the
other 13 signal attributes coming from the electrodes as
exogenous series.

KDDCUP: This is the data set used for The Third Inter-
national Knowledge Discovery and Data Mining Tools
Competition, which was held in conjunction with KDD-99
The Fifth International Conference on Knowledge Discov-
ery and Data Mining. This database contains a standard
set of data to be audited, which includes a wide variety of
intrusions simulated in a military network environment.

In our experiments, the last 20% points are the test
data. Among the rest 80% data, the previous 80%
data points are the training data and the later 20%
points are the validation data. In order to make each
feature make the same contribution to the results,
the normalization method is used to preprocess the
data.

Parameter settings and evaluation metrics

Hyper-parameters: In this experiment, we set seven
parameters according to the previous work (Qin et al.
2017; Liu et al. 2020). The Adam optimizer (Kingma and
Ba 2014), in which the learning rate is set as 0.0001 and
the batch size is set as 128, is used to training the genera-
tor network and discriminator network. In the VAECGAN
model, the length of the window size T is set as the value
of 5,8,10,13,15,20. The prediction result proves that ‘T’
equals 10’ is the best choice. For simplicity, the hidden
units(m) of the encoder network, the hidden units(p) of
the generator network have the same size which conducts
a search over 16, 32, 64, 128, 256. When m=p=64 or 128,
our approach achieves the best performance over the test
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set. The clipping threshold 6 will be proved in the next
part.

Evaluation Metrics: In order to compare the effective-
ness of various time series prediction algorithms, we use
two common criteria to evaluate our model, namely root
squared error (RMSE) (Plutowski et al. 1996) and mean
absolute error (MAE) which are widely used in regression
tasks. The formula of the two measurements is defined
below:

N
1 o
RMSE = ~ ;‘(y; — 52 (21)
=
1
MAE = =3 |y = 3] (22)
i=1

Where y; is the true target at time ¢ and j; is the predicted
value at time ¢.

Baseline models

LSTM (Hochreiter and Schmidhuber 1997): LSTM is a
variant algorithm of RNN which overcomes the limitation
of vanishing gradient in RNNs. Since it can capture long-
term dependence, it has achieved good results in many
time series tasks.

Seq2Seq (Sutskever et al. 2014): Seq2Seq is an
Encoder-Decoder model with a sequence of inputs and
sequence of outputs. Encoder neuro network can turn a
variable length input sequence into a fixed length vector.
Then Decoder neuro network can decode the vector into
a variable length output sequence. This method has good
performance in machine translation, text translation or
other NLP processing.

DARNN (Qin et al. 2017): This algorithm is proposed
in 2017, which shows the state-of-the-art performance
in single-step time series prediction. With the dual-stage
attention scheme, DARNN model can not only make
predictions effectively, but can also be easily interpreted.

TCN (Bai et al. 2018): The Temporal Collaborative
Network integrates the modeling ability in the time
domain and the feature extraction ability in the low
parameter number of convolutions. It runs faster than
RNN and is good at capturing timing dependency.

DSTPRNN (Liu et al. 2020): The Dual-Stage Two-
Phase based RNN is inspired by the human attention
mechanism. The first phase produces violent but decen-
tralized response weight, while the second phase leads
to stationary and concentrated response weight. multi-
ple attentions are employed on target series to boost the
long-term dependence.

VAE: This method uses the combination of encoder net
and generator net mentioned in this paper. This method
is also used to train the encoder network.
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Performance comparison

In this section, our proposed model is compared with the
other five baseline models on five datasets. The prediction
result with fifty time steps records in Table 1. The LSTM
units in the LSTM model and Seq2Seq model are 64.
Other models are consistent with their papers. The first
line represents the MAE, the second line represents
the RMSE, and the best result displays in boldface.

In Tables 1 and 2, the prediction accuracy will be
reduced with a long step size. The prediction results of the
LSTM model and Seq2Seq model can capture the tem-
poral dependence to a certain extent. But in the Seq2Seq
model, the series data are mapped to a fixed dimension
vector in the encoder stage. Therefore, some information
in the series data is lost. The DCRNN model is proposed
for short term prediction. It’s also not good enough in
the long term prediction. In contrast, although the VAE
model also belongs to the encoder-decoder network, the
input attention mechanism and the self-attention mecha-
nism can retain data information to a large extent in the
encoder stage. Therefore, the prediction result of the VAE
model is more accurate than the Seq2Seq model. In Com-
parison, although the TCN model captures the temporal
dependence with convolution layers, its performance is
not good in the face of long-term prediction. Because
the transfer learning ability of the TCN model is poor,
the prediction effect of different databases is not good.
DSTPRNN model adopts a two-stage attention mecha-
nism, which can effectively capture temporal and spatial
dependence. Therefore, it shows good prediction perfor-
mance. The performance of the VAE model is worse than
the DSTPRNN model. However, after adding the CGAN
module, the prediction effect of the VAECGAN model has
been greatly improved. It also proves that the training and
feedback by the discriminator network can generate better
prediction data.

It can be clearly seen from Fig. 3 that the red curve
(VAECGAN) is more consistent with the purple curve
(real values). This shows that our model is more accu-
rate than the other three models. At the same time, it can
be seen that VAECGAN maintained the same trend with
the real value compared with TCN, which fluctuated a
lot. Due to the poor performance of LSTM and seq2seq
algorithms, we omit them.

In Fig. 4, we show the prediction effect of the various
model on the SML dataset and the NASDAQ dataset. It
can be seen from the observation that with the increase
of the prediction step €, the prediction accuracy of all
the models has been reduced to varying degrees. This
phenomenon also confirms the difficulty that the pre-
diction accuracy decreases with the increase of the pre-
diction step. But VAECGAN model is more stable than
the other baseline model. And with the increase of the
step size, the VAECGAN model performs better. Mean-
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while, the performance of the VAECGAN model is no
worse than the TCN model and DSTPRNN model in
short-term perdition. The predicted value of the VAEC-
GAN model is closer to the real value than the other
model at the corner. Therefore, it can be proved that the
performance of the VAECGAN model in prediction is
better.

In order to verify the help of the dynamic weight clip-
ping strategy for the stability of the discriminator, we
compare the loss value of the discriminator with and with-
out weight clipping on the SML dataset, as shown in Fig. 5.

It is obvious that the yellow line is more stable and con-
verges faster than the blue line, which indicates that the
discriminator network in the model with weight clipping
strategy has better stability and faster convergence effect.

In order to evaluate the sensitivity and effectiveness of
the dynamic weight clipping strategy, we test the effect
of different thresholds (from 0.1 to 0.3) on the prediction
results. Figure 6 shows the effect of weight clipping meth-
ods. As shown in the figure, the prediction results will
fluctuate with the change of clipping threshold 6. There-
fore, defining an appropriate threshold can effectively
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improve the prediction effect. The prediction result of the
model outperforms better when the clipping threshold 6
is equal to 0.2.

Conclusion and future work

In this study, a new framework VAECGAN for long-term
prediction in multivariate time series has been proposed.
The encoder module is used to deal with the multidi-
mensional driving sequence data, and the results of the
encoder network input into the generator as the latent
space. Compared with generating data from noise, more
relevant information is retained in the latent space. Mean-
while, in order to improve the accuracy of prediction, the
discriminator network is used to feedback the result to
the generator network. We also verify the help of dynamic
threshold for data generation and the most suitable clip-
ping threshold. Finally, we conduct the evaluation with
five open real-world data sets. It is proved that the model
achieved the best performance in long-term prediction on
the evaluation metrics of MAE and RMSE by comparing
with the five baselines.

In future work, we would continue to study the use of
the GAN framework to generate long-term data to solve
the problem that the algorithm in this paper sometimes
generates duplicate data. We will also adjust data genera-
tion methods to improve the accuracy of short-term data
prediction.
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