
Lu et al. Cybersecurity            (2022) 5:12  
https://doi.org/10.1186/s42400-021-00108-3

RESEARCH

Improved conditional differential attacks 
on lightweight hash family QUARK
Xiaojuan Lu1,2, Bohan Li1,2, Meicheng Liu1,2* and Dongdai Lin1,2* 

Abstract 

Nonlinear feedback shift register (NFSR) is one of the most important cryptographic primitives in lightweight cryptog-
raphy. At ASIACRYPT 2010, Knellwolf et al. proposed conditional differential attack to perform a cryptanalysis on NFSR-
based cryptosystems. The main idea of conditional differential attack is to restrain the propagation of the difference 
and obtain a detectable bias of the difference of the output bit. QUARK is a lightweight hash function family which is 
designed by Aumasson et al. at CHES 2010. Then the extended version of QUARK was published in Journal of Cryptol-
ogy 2013. In this paper, we propose an improved conditional differential attack on QUARK. One improvement is that 
we propose a method to select the input difference. We could obtain a set of good input differences by this method. 
Another improvement is that we propose an automatic condition imposing algorithm to deal with the complicated 
conditions efficiently and easily. It is shown that with the improved conditional differential attack on QUARK, we can 
detect the bias of output difference at a higher round of QUARK. Compared to the current literature, we find a distin-
guisher of U-QUARK/D-QUARK/S-QUARK/C-QUARK up to 157/171/292/460 rounds with increasing 2/5/33/8 rounds 
respectively. We have performed the attacks on each instance of QUARK on a 3.30 GHz Intel Core i5 CPU, and all these 
attacks take practical complexities which have been fully verified by our experiments. As far as we know, all of these 
results have been the best thus far.
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Introduction
Nonlinear feedback shift register (NFSR) is one of the 
most important cryptographic primitives in the modern 
cryptosystem. As the main building block of a cryptosys-
tem, the NFSR contains an internal state and a non-linear 
feedback function. The internal state is updated at each 
clock cycle by left/right shifting one stage and comput-
ing a new one by the non-linear feedback function. The 
NFSR can provide high level of security and privacy 
while achieving a good performance in hardware imple-
mentation. Therefore, many cryptographic algorithms 
are designed based on NFSR, such as the stream ciphers 

Trivium (De  Canniere and Preneel 2008) and Grain v1 
(Hell et al. 2008) in the eSTREAM portfolio 2 (hardware 
oriented), and the lightweight block cipher KATAN/
KTANTAN (De  Canniere et  al. 2009). Especially, each 
instance of the lightweight hash function family QUARK 
(Aumasson et  al. 2010; Aumasson et  al. 2013; Aumas-
son et al. 2012) contains two NFSRs. In light of this, the 
NFSR-based cryptosystems have been a hot research 
topic for many cryptanalysts.

In cryptanalysis, the NFSR-based cryptosystems are 
often analyzed as Boolean functions in which the input, 
output, and internal state bits are viewed as variables. In 
light of this, different types of attacks are proposed, such 
as cube attack (Dinur and Shamir 2009) and conditional 
differential attack (CDA) (Knellwolf et  al. (2010)). The 
framework of CDA on NFSR-based cryptosystems was 
first proposed in Knellwolf et  al. (2010) at ASIACRYPT 
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2010. The CDA is based on the differential attack by 
introducing the technique of condition imposing at the 
first few rounds of the cryptosystem. When applying the 
CDA, the attacker first chooses a proper input difference. 
Then, the attacker traces the difference characteristic 
round by round and imposes some conditions at proper 
rounds so that he/she can control the difference propa-
gation as many rounds as possible. Finally, a detectable 
bias of the output difference can be obtained. This may 
result in a distinguishing attack or a key recovery attack 
depending on the types of the conditions.

In the traditional CDA, the attacker usually chose 
the single-bit input difference because it is believed to 
propagate slower than the multi-bit input difference. 
Lately, in order to trace the difference characteristic 
of the cryptosystem as many rounds as possible, two 
approaches are applied: forward approach and backward 
approach (Knellwolf 2012; Li and Guan 2018). The for-
ward approach aims to control the propagation of the 
single-bit input difference ei as far as possible, and back-
ward approach aims to find an input difference (with 
arbitrary weight) which can lead to such single-bit differ-
ence ei after Qei rounds. By concatenating the difference 
characteristic obtained from the forward and back-
ward approach, the distinguisher of more rounds may 
be found. In Zhang et al. (2015), Yang et al. (2018), both 
their forward approaches are to find the maximum round 
of each single-bit input difference, where a deterministic 
difference still exists in the internal state. Then, the top k 
( k ≥ 1 ) are chosen to be the candidates. In this paper, we 
apply a different forward approach to find the maximum 
round of of each single-bit input difference. Compared 
to the methods in Zhang et al. (2015), Yang et al. (2018), 
we consider a probabilistic difference characteristic rather 
than a deterministic one. In order to estimate the bias of 
output difference, some theoretical frameworks are pro-
posed. For example, Banik (2014) proposed a theoretical 
framework to compute the biases of the output difference 
of Grain v1, and Liu et al. (2021) proposed a new theory 
of estimation of the differential-linear bias at CRYPTO 
2021. Since a truncated differential attack can be consid-
ered as an extreme case of the differential-linear attack 
(Blondeau et al. 2017), the theory of estimation of the dif-
ferential-linear bias can also be applied to the CDA (Liu 
et  al. 2021). In this paper, we apply the technique pro-
posed in Liu et al. (2021) to estimate the bias of output 
difference in the CDA.

Another difficulty in the attack is the condition 
imposing. On the one hand, both the number of the 
imposed conditions and the complexity of the difference 

expression increase rapidly with each increasing round 
which may exceed the attacker’s computing capability. 
On the other hand, according to the security model, all 
the conditions should be replaced by the initial vari-
ables (input bits) which may lead to contradictions (e.g. 
an initial variable needs to be set as 0 and 1 at the same 
time). In Ma et al. (2017), the authors chose to nullify the 
common initial vector (IV) bits and directly nullify the 
internal variables. Their strategy is to make the number 
of Type 1 conditions as large as possible and limit the 
number of all conditions as small as possible at the same 
time. In Li and Guan (2018), the authors factored the tar-
get condition expression to the form f = f1 · f2 + f3 with 
a manually elaborative analysis. Their strategy is to make 
the number of Type 1 conditions as small as possible and 
limit the number of all conditions as small as possible 
at the same time, which is different from the one in Ma 
et al. (2017). However, compared to the previous manual 
analyses, we propose the first algorithm to automatically 
impose the conditions. By applying such automatic algo-
rithm, we can handle the much more complex condition 
expressions and improve the efficiency of the condition 
imposing process in CDA.

The lightweight hash function family QUARK was first 
proposed by Aumasson et al. (2010) at CHES 2010. Then 
its extended version was published in Journal of Cryptol-
ogy 2013 (Aumasson et al. 2013), in which the specifica-
tion of QUARK was slightly modified, more accurately, 
the digest length has been increased. Another instance 
C-QUARK (Aumasson et  al. 2012) is proposed in 2012, 
which is designed for the scenario of authenticated 
encryption scheme with associated data (AEAD). The 
CDA was first applied on the QUARK instances by the 
designers of QUARK (Aumasson et  al. 2013; Aumasson 
et  al. 2012) providing the primary security evaluation 
against CDA. In 2015, Zhang et al. (2015) improved the 
CDA on QUARK by a forward computation algorithm to 
obtain the distinguishers for the U-QUARK, D-QUARK, 
S-QUARK and C-QUARK up to 153, 159, 248 and 445 
rounds respectively. Then, Yang et al. (2018) proposed a 
technique called symbolic-like computation to improve 
the corresponding distinguishers up to 155, 166, 259 
and 452 respectively. In order to analyze the security of 
QUARK further, we apply our improved CDA on each 
instance of QUARK. Furthermore, we perform the corre-
sponding experiments to verify the validity and efficiency 
of the attacks. From the results of the practical experi-
ments, we make improvements on the cryptanalysis of all 
the instances of QUARK, which are compared with the 
cryptanalytic results in current literature.



Page 3 of 16Lu et al. Cybersecurity            (2022) 5:12 	

Our contributions
All in all, our contributions can be described as follows.

•	 We propose a method to obtain a set of good input 
differences. The procedure of the method contains 
the forward search part and backward search part. 
In the forward search part, we aim to obtain a set of 
good single-bit differences denoted as S. Such a sin-
gle-bit difference will be chosen as a potential con-
didate if it follows the rule that this single-bit differ-
ence will result in a large bias of output difference at a 
high enough round. Futhermore, the bias is estimated 
theoretically by the technique proposed by Liu et al. 
(2021) at CRYPTO 2021. In terms of the rule used in 
the forward search part, we consider a probabilistic 
difference characteristic (e.g. |ε| > 2−12 ) rather than 
a deterministic one (i.e. |ε| = 1

2
 ). For a single-bit dif-

ference ei in S, we take advantage of the backward 
approach to derive an input difference (with arbi-
trary weight) which will result in the single-bit differ-
ence ei after Qei round. In the backward search part, 
we aim to expand rounds as many as possible, that 
is we make Qei as large as possble by imposing some 
proper conditions. By such method, a better differ-
ence characteristic can be obtained which is expected 
to lead to a detectable bias of the output difference at 
a higher round.

•	 We propose an automatic condition imposing algo-
rithm to handle the complex conditions. In the previ-
ous research work, conditions imposing is a time con-
suming and complicated process. In order to explain 
the efficiency and advancement of the algorithm, we 
revisit the work of D-QUARK in Yang et  al. (2018) 
with our proposed automatic condition imposing 
algorithm. Consequently, we find a distinguisher of 
D-QUARK at the same round by imposing different 
conditions with lower complexity (see Tables 1 and 2).

•	 We propose the improved CDA on QUARK and 
obtain the current best cryptanalytic results on all 
instances of QUARK. We can distinguish U-QUARK, 
D-QUARK, S-QUARK and C-QUARK up to 157, 
171, 292 and 460 rounds with the complexity of 
228 , 219 , 222 , and 223 respectively, which respectively 
increases 2/5/33/8 rounds. For example, we find a 
distinguisher of C-QUARK up to 460 rounds with 
complexity 223 , compared to the 452 rounds with 
higher complexity 228 in the current literature.

Table 1  Results of QUARK

*We revisit the work in Yang et al. (2018) by imposing different conditions with 
lower complexity

Cipher Round Complexity References

U-QUARK 136 227 Aumasson et al. (2013)

153 218 Zhang et al. (2015)

155 227 Yang et al. (2018)

157 228 This paper

D-QUARK 159 227 Aumasson et al. (2013)

159 222 Zhang et al. (2015)

166 225 Yang et al. (2018)

166∗ 222 This paper

171 219 This paper

S-QUARK 237 227 Aumasson et al. (2013)

248 224 Zhang et al. (2015)

259 215 Yang et al. (2018)

273 210 This paper

292 222 This paper

C-QUARK 396 220 Aumasson et al. (2012)

445 220 Zhang et al. (2015)

452 228 Yang et al. (2018)

460 223 This paper

Table 2  Cryptanalytic Results of QUARK

*We revisit the work in Yang et al. (2018) by imposing different conditions with 
lower complexity

Cipher Input difference bits Ouput 
difference 
bit

Round Bias Pairs of 
input 
samples

U-QUARK s15, s17, s64, s70, s71, s72, 157 2−14.01 233

s76, s82, s84, s89, s93, s95, s0

s97, s99, s101

D-QUARK s41, s89 s88 166∗ 2−10.78 230

s89, s144 s88 171 2−9.67 228

S-QUARK s7, s16, s19, s107, s129, s130, s0 273 2−4.84 228

s130, s140, s143, s144, s145,

s146, s147, s150, s156, s162, 292 2−10.88 230

s165, s168, s171, s174, s177

C-QUARK s24, s32, s34, s38, s40, s91, s0 460 2−11.72 230

s125, s194, s195, s202, s204,

s212, s220, s225, s227, s229,

s243, s244, s249, s250, s255,

s256, s273, s275, s277, s281,

s283, s285, s287, s289
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•	 In order to verify the validity and the efficiency of the 
above attacks, we perform the corresponding experi-
ments on a 3.30 GHz Intel Core i5 CPU. Moreover, 
these experiments also confirm that our attacks take 
practical complexities. So as to show the advancement 
of our improved CDA on QUARK, our cryptanalytic 
results and the previous results are listed in Table 1.

Preliminaries
In this section, we first make a description of lightweight 
hash family QUARK. Then, we introduce the basic 
framework of CDA.

Description of QUARK
The lightweight hash function family QUARK was first 
proposed by Aumasson et al. (2010) at CHES 2010. Then 
its extended version was published in Journal of Cryptol-
ogy 2013 (Aumasson et al. 2013), in which the specifica-
tion of QUARK was slightly modified, more accurately, 
the digest length has been increased. The authors finally 
confirm three instances: U-QUARK, D-QUARK, and 
S-QUARK with the digest lengths defined respectively 
as 136, 176 and 256 bits. Another instance C-QUARK 
(Aumasson et  al. 2012) is proposed in 2012, which is 
designed for the scenario of authenticated encryption 
scheme with associated data (AEAD).

Sponge construction
QUARK makes use of the sponge construction with a b-
bit permutation P. The notations as follows were intro-
duced in Aumasson et  al. (2013). The structure of each 
instance of QUARK depends on the capacity c, rate (or 
block length) r, and digest length n. In Aumasson et  al. 
(2012, 2013), the designers gave the b-bit predefined ini-
tial state of each instance of QUARK. In order to deal 
with a message m, three phases will be applied i.e. initial-
ization, absorbing phase and squeezing phase. During the 
initialization, the message m is supposed to be padded 

according to the rate r. The padding rule is to append 
an ‘1’ bit and the least ‘0’ bits to make the total length 
be divided by the rate r. After the initialization, the r-bit 
message block is absorbed in the construction by XOR 
with the last r bits of the internal state. Then, the internal 
state is updated by the permutation P in the absorbing 
phase. During the squeezing phase, the last r bits of the 
internal state are squeezed. Then the internal state con-
tinues to be updated by the permutation P until the total 
n bits are squeezed as the digest.

Permutation P
The permutation P used in the QUARK is inspired by the 
stream cipher Grain v1 and the block cipher KATAN, as 
depicted in Fig. 1. The permutation P is designed based 
on three feedback shift registers (FSRs). Two are non-
linear denoted as X and Y, and one is linear denoted as 
L. Both the length of the two non-linear feedback shift 
registers (NFSRs) are b/2, and the length of the linear 
feedback shift register (LFSR) is defined as l = ⌈log4b⌉ 
bits. Thus, the internal state of permutation P at round 
t ≥ 0 can be denoted as (Xt ,Y t , Lt) whose components 
are listed as follows. The components in X at round t can 
be denoted as Xt = (Xt

0
, . . . ,Xt

b/2−1
) . The components 

in Y at round t can be denoted as Y t = (Y t
0
, . . . ,Y t

b/2−1
) 

and the components in L at round t can be denoted as 
Lt = (Lt

0
, . . . , Ltl−1

).
Considering the permutation P as an independent 

cryptographic primitive, its input can be viewed as a b-
bit initial vector (IV). Then the process of permutation 
P is divided into three phase: initialization, state update 
and computation of the output. During the initialization, 
P initializes the internal state (X0,Y 0, L0) with the b-bit 
input denoted as IV = (s0, . . . , sb−1) . In more detail, X 
is initialized as (X0

0
, . . . ,X0

b/2−1
) := (s0, . . . , sb/2−1) . Y is 

initialized as (Y 0
0
, . . . ,Y 0

b/2−1
) := (sb/2, . . . , sb−1) and L is 

initialized as (L0
0
, . . . , L0l−1

) := (1, . . . , 1).
During the state update phase, the internal state is 

updated according to the corresponding Boolean func-
tions and the previous state. First, the update value of ht is 
computed as ht := h(Xt ,Y t , Lt) . Then, X is clocked with 
the newly updated bit computed by using Y t

0
 , the function 

f, and the value of ht . Y is clocked with the newly updated 
bit computed by using the function g, and the value of ht . 
Finally, L is clocked with the newly updated bit computed 
by using the function p. To show the update process more 
clearly, the update of the state is listed in (1).

(1)

(Xt+1
0

, . . . ,Xt+1

b/2−1
) := (Xt

1, . . . ,X
t
b/2−1

,Y t
0 + f (Xt)+ ht),

(Y t+1
0

, . . . ,Y t+1

b/2−1
) := (Y t

1 , . . . ,Y
t
b/2−1

, g(Y t)+ ht),

(Lt+1
0

, . . . , Lt+1

l−1
) := (Lt1, . . . , L

t
l−1

, p(Lt)).

NFSR X

f

NFSR Y

g

h

LFSR L

p

Fig. 1  The permutation P of QUARK
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For QUARK, the state of permutation P is updated 4b 
times (especially 2b times for C-QUARK). In the state 
update phase, the final state of the NFSRs X and Y is 
defined as the output of the permutation P. Then, dur-
ing the computation of the output phase, such output 
is used to set to the new internal state of the sponge 
construction.

Proposed instances
Until now, the hash function family QUARK con-
tains four instances of different flavors: U-QUARK, 
D-QUARK, S-QUARK, and C-QUARK. The first three 
instances use the same data-independent LFSR L with the 
length defined as l = ⌈log4b⌉ = 10 . The function p of L is 
defined as p(Lt) = Lt

0
+ Lt

3
 . For C-QUARK, the length of 

L is defined as l = ⌈log4b⌉ = 16 , and the corresponding 
feedback polynomial p(Lt) returns Lt

0
+ Lt

2
+ Lt

3
+ Lt

5
.

The functions f, g, and h for each instance of QUARK 
are nonlinear functions of internal state variables, which 
are presented in Appendix. For more details of QUARK 
family, we can refer to the C source code (Aumas-
son https://​github.​com/​veorq/​Quark/) and the original 
papers (Aumasson et al. 2012, 2013) which are given by 
the designers.

Backward update functions
As mentioned above, forward approach and backward 
approach are used to trace the difference character-
istic of the cryptosystem as many rounds as possible. 
For example, given an single-bit difference at round t, 
the forward approach obtains difference characteristic 
from round t to round t + 1 . In order to expand the dif-
ference characteristic, backward approach is proposed 
to trace the difference characteristic from round t to 
round t − 1.

The backward update functions of permutation P 
used in the backward approach can be derived from the 
feedback functions by the simple computation. Suppose 
the state of X, Y and L at round t is (Xt

0
, . . . , Xt

b/2−1
) and 

(Y t
0
, . . . ,Y t

b/2−1
) , and (Lt

0
, . . . , Ltl−1

) respectively. Then, the 
backward update functions can be derived as follows.

(Lt−1
0

, . . . , Lt−1

l−1
) :=(Ltl−1

+ p∗(Lt−1), Lt0, . . . , L
t
l−2

),

(Y t−1
0

, . . . ,Y t−1

b/2−1
) :=(Y t

b/2−1
+ g∗(Y t−1)+ ht−1

,Y t
0 , . . . ,Y

t
b/2−2

),

(Xt−1
0

, . . . ,Xt−1

b/2−1
) :=(Y t−1

0
+ Xt

b/2−1
+ f ∗(Xt−1)+ ht−1

,Xt
0, . . . ,X

t
b/2−2

).

where p∗(Lt−1) = Lt−1
0

+ p(Lt−1), g∗(Y t−1) = Y t−1
0

+ g(Y t−1) 
and f ∗(Xt−1) = Xt−1

0
+ f (Xt−1) . Notably, according to 

the definition of p, f, g and h in the previous part, ht−1 is 
independent on Xt−1

0
 and Y t−1

0
 , p∗(Lt−1) is independent 

on Lt−1
0

 , g∗(Y t−1) is independent on Y t−1
0

 , and f ∗(Xt−1) 
is independent on Xt−1

0
.

Framework of CDA on NFSR‑based cryptosystems
Consider that C is an NFSR-based cryptosystems and 
without loss of generality, let the size of internal state be 
l. Suppose that the cipher C takes as input a public ini-
tial vector v = (v1, . . . , va) and secret key k = (k1, . . . , kb) . 
Note that the secret key may not be necessary for some 
hash function cryptosystems. Assume that the internal 
state of C at round r is denoted as (sr , sr+1, . . . , sr+l−1) , 
the newly generated state bit sr+l at round r is updated 
according to sr+l = g(sr , sr+1, . . . , sr+l−1) , and the output 
bit z at round r is defined as: zr = h(sr , sr+1, . . . , sr+l−1).

Then, we introduce some useful notations with respect 
to CDA. Let �in be the input difference whose ‘1’ dif-
ferences are only inserted in v, let �sr+l be the differ-
ence of newly generated state bit sr+l at round r, and 
let �zr represent the difference of the output bit of the 
cipher at round r. Note that the output bit zr can also be 
viewed as a Boolean function of k and v denoted as f(k, v). 
Therefore, the output difference �zr can be denoted as: 
�zr = �f (k , v) = f (k , v)+ f (k , v +�in). For r ≥ 0 , the 
bias ε of �zr is defined as: ε = Pr(�zr = 0)− 1

2
.

The critical technique of CDA is to control the differ-
ence propagation by imposing some conditions (restric-
tions) on the initial IV/key variables. In order to achieve 
such goal, we should trace the difference characteristic 
round by round and make the newly updated uncertain 
difference expressions �si+l , (0 ≤ i ≤ r1 − 1) to be 0 or 
1 in the first r1 rounds. Although these equations might 
contain internal state variables, only the initial public 
variables can be controlled in a chosen IV scenario. Thus, 
these equations are supposed to be analyzed carefully 
to make sure that they are satisfied by imposing cond-
tions only on the initial IV/key variables. In terms of the 
involved initial variables, the conditions can be divided 

https://github.com/veorq/Quark/
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into three separate types. Type 0 is defined as the con-
dition only including public variables (e.g. IV). Type 1 is 
defined as the condition including both of public vari-
ables (e.g. IV) and secret variables (e.g. key). Type 2 is 
defined as the condition including only secret variables 
(e.g. key).

Now we describe the framework of CDA on the NFSR-
based cryptosystem. In general, the main idea of CDA 
(Knellwolf et al. 2010) is to distinguish the output differ-
ence �zr from a random Boolean function by imposing 
some conditions to avoid the propagation of the input 
difference �in . The detailed steps of CDA are described 
as follows. 

1	 The attacker chooses an initial input difference to 
trace the difference characteristic of the cipher;

2	 Impose conditions on the newly generated state bits 
to control the early difference propagation;

3	 Verify this difference characteristic by experiments to 
show the rounds where the bias of the difference of 
output bit can still be observed.

4	 Repeat step 1–step 3 until finding a difference char-
acteristic good enough;

5	 The attacker performs a distinguishing attack or a key 
recovery attack, according to the imposed conditions 
only involve IV bits or also key bits.

Owing to the advancement of the CDA, this crypta-
nalytic method was also applied to QUARK. In 
Zhang et  al. (2015), proposed an improved CDA and 
applied it to QUARK. They proposed an algorithm to 
search for the maximum round based on a rule that 
there is still a deterministic difference in the inter-
nal state for a given difference as input. They applied 
this algorithm to filter the single-bit difference and 
select some potential ones which may attack more 
rounds of the cipher. Then for each single-bit differ-
ence candidate, they derived the corresponding input 
difference by backward computation and imposing 
conditions from round q to round 0. Consequently, 
they gave a distinguisher of U-QUARK/D-QUARK/S-
QUARK/ C-QUARK up to 153/159/248/445 rounds 
respectively. In Yang et  al. (2018), proposed a tech-
nique called symbolic-like computation to simulate 
the difference propagation. Based on the same rule in 
Zhang et al. (2015), the technique was used to choose 
the potential single-bit differences as candidates. 
After obtaining the single-bit difference, then they 
made a tradeoff between the number of the backward 
round and that of the forward round according to the 

conditions needed to be imposed. Finally they distin-
guished U-QUARK/D-QUARK/S-QUARK/C-QUARK 
up to 155/166/259/452 rounds respectively.

Improved CDA on QUARK
In this section, we introduce the the improved CDA on 
QUARK, which is divided into four phases: input differ-
ence choosing phase (consists of forward search part and 
backward search part), difference retracing phase, con-
dition imposing phase and verifying phase, and its sche-
matic diagram is depicted in Fig. 2.

Compared with the work in Zhang et al. (2015), Yang 
et  al. (2018) mentioned above, two improvements are 
applied in our CDA on QUARK. One improvement is 
that we choose the single-bit differences as the candi-
dates following the rule that this single-bit difference will 
result in a large bias of output difference at a high enough 
round. Furthermore, the bias is estimated by the tech-
nique proposed by Liu et al. (2021) at CRYPTO 2021. In 
other words, we consider a probabilistic difference char-
acteristic (e.g. |ε| > 2−12 ) rather than a deterministic one 
(i.e. |ε| = 1

2
 ) in the input difference choosing phase. The 

other improvement is that we proposed an algorithm to 
automatically impose conditions to deal with the complex 
condition expressions. In the following, we introduce the 
four phases of improved CDA on QUARK in detail and 
the two improvements will be further illustrated in the 
input difference choosing phase and condition imposing 
phase respectively.

Input difference choosing phase
In this phase, we target at choosing a good input differ-
ence which owns a good difference characteristic leading 
to a detectable bias of output difference at rounds as high 
as possible. The improved procedure is divided into the 
following two parts: forward search part and backward 
search part.

Before introducing the forward search part, some 
notations should be defined first. The single-bit differ-
ence inserted in the i-th bit of IV is denoted by ei , where 
0 ≤ i ≤ b− 1 . Let Rei denote the maximum round at 
which the bias εei of output difference can be detected 
with difference ei . We call ei is a good single-bit difference 
if Rei satisfies Rei > TH and εei satisfies |εei | > ε0 , where 
TH is a predefined constant threshold and the ε0 is usu-
ally a relatively large bias (e.g. 2−10).

Forward search part
At CRYPTO 2021, Liu et  al. (2021) studied the differ-
ential-linear attack from an algebraic perspective. They 
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proposed a new theory of estimation of the differential-
linear bias. Since a truncated differential attack can be 
considered as an extreme case of the differential-linear 
attack (Blondeau et  al. 2017), the theory of estimation 
of the differential-linear bias can also be applied to the 
CDA (Liu et  al. 2021). During the forward search part, 

we applied the technique proposed in Liu et al. (2021) to 
estimate the bias of output difference in the CDA. The 
detailed procedure is presented as follows.

We apply the Algorithm 1 and Algorithm 2 in Liu et al. 
(2021) to all single-bit differences to add the good ones to 
the candidate set S. For each ei ∈ S , Rei of the single-bit 

Fig. 2  Schematic diagram of improved CDA on QUARK
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difference ei should satisfy Rei > TH , and the bias εei of 
output difference at round Rei should satisfy |εei | > ε0 . In 
addition, the number of ‘0’ differences in its difference char-
acteristic should be as large as possible while the number of 
‘1’ differences should be as small as possible. Note that in 
the forward search part, the previous research work (Zhang 
et al. 2015; Yang et al. 2018) aimed to find the maximum 
round of each single-bit difference, where a determinis-
tic difference still exists in the internal state (i.e. |εei | =

1
2
 ). 

Then the top k (k ≥ 1) are chosen to be the candidates. 
Compared with their methods, we aim to search for the 
candidates which the biases of output differences are still 
large enough at the rounds as high as possible. From this 
perspective, we consider a probabilistic difference charac-
teristic (e.g. |εei | > 2−12 ) rather than a deterministic one 
(i.e. |εei | =

1
2
 ) in the improved CDA on QUARK. Therefore, 

the candidates we choose are expected to lead to a detect-
able bias of output difference at a higher round.

Backward search part
The aim of the backward search part is to expand rounds 
as many as possible. However, with the increasing round 
of the cipher, the symbolic expressions of the output bit 
get more and more complex. Furthermore, the symbolic 
expressions of the output bit are too complex to com-
pute after some rounds letting alone the derivation of 
the required conditions. In light of this, in the backward 
search part, we should choose the rounds at which the 
symbolic expressions of the output bit and the required 
conditions can both be derived. During this part, we 
choose a candidate ei ∈ S , we take advantage of the back-
ward approach to trace back the difference characteristic 
for Qei rounds obtaining the input difference (with arbi-
trary weight), that is such input difference will lead to the 
single-bit difference ei after Qei rounds. Now, we derive an 
input difference.

Up to now, we can obtain the single-bit difference can-
didate set S in the forward search part and could obtain 
the corresponding input difference in the backward 
search part. Such obtained input difference is expected to 
result in a detectable bias of output difference at a higher 
round of QUARK.

Difference retracing phase
In order to prevent the difference propagation as many 
rounds as possible, the difference retracing phase should 
be performed. During this phase, for an input differ-
ence obtained in the input difference choosing phase, we 
retrace the difference characteristic from the round 0 to 

round r1 and finally collect a set S′

con of conditions on the 
internal state variables. In other words, we prevent differ-
ence propagation and collect conditions from round 0 to 
round r1 . When we retrace the difference characteristic 
for an input difference, we should impose the conditions 
as simple as possible and restrain the number of ‘1’ differ-
ence in the newly updated bits as small as possible. This 
is because of the following two findings. First, the differ-
ence propagates more rapidly with the increasing num-
ber of difference ‘1’, which can also lead to the increasing 
number of conditions. Second, the more complex condi-
tions we want to impose, the more likely the initial bits 
will be conflicts. Then we can obtain the rounds of an 
input difference at which a detectable bias of the output 
difference can be detected.

Condition imposing phase
After collecting the set S′

con which are conditions on the 
internal state variables in the difference retracing phase, 
the next task is to analyze carefully to ensure that the 
conditions only contain IV variables. Since condition 
imposing is a very difficult and time-consuming process, 
we first introduce the method to automatically impose 
conditions. we propose an algorithm to automatically 
obtain a set of initial variables satisfying these conditions 
while keeping total number of conditions as small as pos-
sible. In order to describe the algorithm clearly, we first 
give a definition as follows. Given the algebraic normal 
form f of a Boolean function, the definition of maximum 
term of f is defined in Definition 1.

Definition 1  (Maximum Term) Given the algebraic 
normal form f of a Boolean function, in all the decompo-
sition forms of f = g1 · g2 + h with g1 being a linear func-
tion containing at most n1 variables, (g1 · g2)max is said to 
be maximum term of f if the number of terms of g1 · g2 is 
the maximum.

Note that the maximum term can be nullified in f by 
imposing the conditions on g1 , that is let g1 = 0 . Since 
g1 is a linear Boolean polynomial, conditions imposed 
on it can be easily derived. Then, the complexity of 
imposing conditions on f can be transformed to that 
of imposing conditions on the remaining part h which 
can also be viewed as a new Boolean function. There-
fore, by iteratively nullifying the maximum terms in the 
Boolean functions, the relative fewer and simpler condi-
tions can be derived. The whole procedure is depicted 
as Algorithm 1.
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In condition imposing phase, when applying the Algo-
rithm  1 to QUARK, |G| becomes too large if n1 > 4 in 
the case of condition expressions containing many vari-
ables. Therefore, n1 is usually set as n1 = 4 for the sake of 
the efficiency. Furthermore, according to some tests and 
experiments, the parameter C < 25 can usually lead to 
satisfying results. Thus, from an empirical perspective, C 
is usually set as C < 25 . By applying these settings, we can 
derive a set Scon in which conditions are on IV variables.

Verifying phase
When we obtain the input difference and a set Scon of 
conditions on IV variables, we should verify this differ-
ence characteristic by experiments to show the rounds at 
which the bias of output difference can still be observed 
with enough input samples. For each pair of input sam-
ples, the initial state bits are set as follows: a bit included 
in the initial input difference is set to be the difference 
bits, bits given in the condition imposing phase are set to 
satisfy conditions and the other IV bits are set to random 
values. Note that the experiments also provide a dem-
onstration of the practical complexity of our improved 
CDA. If we can not observe a bias at a higher round from 
this input difference, we should go back to backward 
search part to select another single-bit difference in can-
didate set S and continue the subsequent phases until the 
bias at a higher round can be detected.

Analysis of QUARK
In this section, we give the cryptanalysis of the improved 
CDA on all instances of QUARK. In Aumasson et  al. 
(2012); Aumasson et  al. (2013), the authors proposed a 

standard attack model for QUARK, in which the initial 
state of the permutation P is assumed chosen uniformly 
and independently at random. The previous crypta-
nalytic researches of QUARK all followed this standard 
attack model. By following the standard attack model, 
our cryptanalysis also aims at the permutation P. We first 
take S-QUARK as an example to show the whole analysis 
progress.

Analysis of S‑QUARK
The procedure of the our improved CDA on QUARK 
can be divided into four phases: input difference choos-
ing phase (consists of forward search part and backward 
search part), difference retracing phase, condition impos-
ing phase and verifying phase. We give the analysis of 
S-QUARK by illustrating these four phases of S-QUARK 
in detail as follows.

In the input difference choosing phase, we first choose 
some single-bit differences as candidates in the forward 
search part. First, we choose TH = 100 and ε0 = 2−12 . 
Then we exhaustively search all single-bit differences to 
obtain the candidates by applying the technique pro-
posed by Liu et  al. at CRYPTO 2021. The set of candi-
dates is

In the backward search part, for the obtained candi-
date set S, we choose candidate e57 using the backward 
approach to expand more rounds. For S-QUARK, we 
choose Qe57 = 51 and obtain the input difference bits in 
the following:

S = {e57, e89, e196, e70}.
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When the input difference is obtained, we enter into dif-
ference retracing phase. We collect the conditions from 
round 0 to round 68, which are complex Boolean poly-
nomials of internal state variables. We first replace the 
internal state variables by initial IV variables.

Then we enter into condition imposing phase. We 
apply the automatic condition imposing Algorithm  1 to 
these complex conditions and the detailed conditions are 
listed as follows.

At round 0 (i.e. after 1 round), in order to control the 
difference ( �X1

127
= 0,�Y 1

127
= 0 ), we impose the condi-

tions as follows:

At round 2, in order to control the difference ( �Y 3
127

= 0 ) 
, we impose the conditions as follows:

At round 3, in order to control the difference 
( �X4

127
= 0,�Y 4

127
= 0 ) , we impose the conditions as 

follows:

At round 4, in order to control the difference 
( �X5

127
= 0,�Y 5

127
= 0 ), we impose the conditions as 

follows:

At round 5, in order to control the difference ( �Y 6
127

= 0 ), 
we impose the conditions as follows:

At round 6, in order to control the difference ( �Y 7
127

= 0 ) 
, we impose the conditions as follows:

At round 7, in order to control the difference ( �X8
127

= 0 ) 
, we impose the conditions as follows:

At round 8, in order to control the difference ( �X9
127

= 0 ) 
, we impose the conditions as follows:

At round 9, in order to control the difference 
( �X10

127
= 0,�Y 10

127
= 0 ), we impose the conditions as 

follows:

(2)
s7, s16, s19, s107, s129, s130, s140, s143, s144, s145,

s146, s147, s150, s156, s162, s165, s168, s171, s174, s177.

s28 = s52 = s141 = s184 = s229 = 0.

s195 = s209 = 0, s158 = 1.

s31 = s55 = s159 = s210 = 0, s187 = s196 = 1.

s73 = s76 = s88 = s104 = s115 = s188 = 0, s160 = 1.

s198 = s212 = 0, s161 = 1.

s162 = s190 = s243 = 0, s147 = 1.

s79 = s107 = s143 = s246 = 0.

s108 = s247 = 0.

s81 = s150 = s202 = 0, s109 = s165 = 1.

At round 10, in order to control the difference 
( �X11

127
= 0 ) , we impose the conditions as follows:

At round 11, in order to control the difference 
( �X12

127
= 0 ) , we impose the conditions as follows:

At round 12, in order to control the difference 
( �X13

127
= 0 ) , we impose the conditions as follows:

At round 14, in order to control the difference 
( �X15

127
= 0 ) , we impose the conditions as follows:

At round 15, in order to control the difference 
( �Y 16

127
= 0 ) , we impose the conditions as follows:

At round 20, in order to control the difference 
( �X21

127
= 0 ), besides imposing the conditions 

s67 = 0, s92 = s120 = 1 , we impose the conditions on X0
4
 

as follows:

At round 21, in order to control the difference 
( �Y 22

127
= 0 ) , we impose the conditions as follows:

At round 23, in order to control the difference 
( �X24

127
= 0 ), besides imposing the conditions 

s126 = 0, s39 = s75 = 1 , we impose the conditions on X0
6
 

as follows:

At round 24, in order to control the difference 
( �Y 25

127
= 0 ) , we impose the conditions as follows:

s62 = s71 = s82 = s110 = s113 = 0.

s83 = s111 = 0.

s153 = s205 = s241 = 0.

s86 = 0, s242 = 1.

s222 = 0, s156 = s171 = s180 = s199 = s208 = s244 = s252 = 1.

s4 = s10 + s50s139 + s50 + s61 + s93 + s131 + s134 + s139 + s144

+ s149 + s200s227s232 + s223 + s227 + s232s240 + s232.

s177 = s250 = 0.

s6 = s13 + s22s34 + s22s58s90s117 + s22

+ s32 + s34s45s117 + s45

+ s53s78s142 + s53s78s245 + s58

+ s64 + s78s106s142 + s78s106

+ s78s142s245 + s90s103s117

+ s90s103 + s90 + s100 + s103

+ s106s142 + s106s245 + s117

+ s134 + s137 + s152 + s168 + s205

+ s225 + s245.

s217 = s231 = 0.
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At round 26, in order to control the difference 
( �X27

127
= 0 ), we impose the conditions on Y 0

39
 as follows:

At round 27, in order to control the difference 
( �Y 28

127
= 0 ) , we impose the conditions as follows:

At round 29, in order to control the difference 
( �X30

127
= 0 ), besides imposing the conditions s101 = 0 , 

we impose the conditions on X0
1
,X0

19
 as follows:

At round 30, in order to control the difference 
( �Y 31

127
= 0 ) , we impose the conditions as follows:

At round 32, in order tocontrol the difference 
( �X33

127
= 0 ), we impose the conditions on X0

5
 as follows:

At round 33, in order to control the difference 
( �Y 34

127
= 0 ) , we impose the conditions as follows:

At round 36, in order to control the difference 
( �Y 37

127
= 0 ), we impose the conditions as follows:

s167 = s10 + s16 + s114 + s137 + s140

+ s145 + s155 + s174 + s193

+ s206 + s216s233s238 + s216

+ s228 + s233 + s238.

s211 = 0, s183 = 1.

s1 = s2 + s8 + s17s29 + s17s53s112

+ s17 + s27 + s40 + s53 + s59

+ s70 + s91 + s95 + s101s137

+ s101s240 + s106 + s129 + s132

+ s163 + s200 + s220 + s240 + 1,

s19 = s13 + s59s84s148 + s59 + s70

+ s84s112s148 + s84s112

+ s84s148s251 + s102 + s112s148

+ s112s251 + s117 + s140

+ s153s168 + s153s219s249 + s153

+ s170 + s174 + s205

+ s219s236s241 + s219 + s220

+ s232 + s236 + s241s249 + s241

+ s251 + 1.

s214 = 0, s186 = 1.

s5 = s4 + s11 + s20s32s43s56s65

+ s20s32 + s20 + s30 + s43s56s65

+ s43 + s56 + s65 + s101 + s132

+ s135 + s166 + s203 + s223.

s189 = 1.

s192 = 1.

At round 38, in order to control the difference 
( �X39

127
= 0 ), besides imposing the conditions s99 = 1 , we 

impose the conditions on X0
14
,X0

36
 as follows:

At round 41, in order to control the difference 
( �X42

127
= 0 ), we impose the conditions on Y 0

47
 as follows:

At round 46, in order to control the difference 
( �X47

127
= 0 ) , we impose the conditions as follows:

At round 55, in order to control the difference 
( �X56

127
= 0 ) , we impose the conditions as follows:

At round 68, in order to control the difference 
( �X69

127
= 0 ), besides imposing the conditions s96 = 0 , we 

impose the conditions on X0
9
 as follows:

So far, the input difference and conditions on IV bits of 
S-QUARK are derived. Now, we start to the last verify-
ing phase. We perform experiments 10 times each with 
enough pairs of input samples. For each pair of input 
samples, the IV bits are set as follows: a bit described 
in (2) are set to be the difference bit, bits given in the 
condition imposing phase are set to satisfy conditions 

s14 = s8 + s23s35s46s59s68

+ s23s35 + s23s59s91s118 + s23 + s33

+ s46s59s68 + s46 + s59 + s65

+ s68 + s91 + s97 + s101 + s112

+ s135 + s138 + s153 + s169

+ s206 + s215 + s226 + 1

s36 = s10 + s11 + s17 + s26s38 + s26

+ s49 + s57 + s68 + s100 + s138

+ s172 + s218 + s249

s175 = s13 + s14 + s20 + s29s41 + s29

+ s60s149 + s60 + s65 + s74

+ s97 + s103 + s118 + s144

+ s149 + s221 + s232 + 1.

s85 = s98 = 1.

s124 = 0, s94 = s116 = 1.

s9 = s10 + s16 + s25s37s48s61s70

+ s25s37 + s25s61s93 + s25 + s35

+ s37s48s112 + s48s61s70s78s93s106

+ s48s61s70 + s48 + s61

+ s70s78s106s112 + s70s78 + s70

+ s78s93s106s112 + s78

+ s93s106s112 + s93 + s103

+ s106 + s114 + s137 + s140

+ s145 + s155 + s228.
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and the other IV bits are set to random values. We ran-
domly generate 228 pairs of input samples and observe 
the bias of the difference of output bit round by round. 
After 273 rounds, the average bias of difference in state 
bit s0(�X273

0
) is 2−4.84 with standard deviation of 2−15.47 . 

Note that the number of pairs of input samples are large 
enough to ensure the validity of our results.

Further, we randomly generate 230 pairs of input 
samples to perform the above experiments and after 
292 rounds, the average bias of difference in state bit 
s0(�X292

0
) is 2−10.88 with standard deviation of 2−15.34 . 

Also, we have randomly generate 235 pairs of input sam-
ples to perform the above experiments and do not detect 
any bias at higher round.

Cryptanalytic results of QUARK
In the above subsection, we have presented the detailed 
analysis of S-QUARK. We also perform the cryptanalysis 
of our improved CDA on the other instances of QUARK. 
The cryptanalytic results for all instances of QUARK are 
showed in Table 2. In addition, we list the imposed condi-
tions for U-QUARK, D-QUARK and C-QUARK in Appen-
dix. All the attacks are performed on a 3.30 GHz Intel Core 
i5 CPU, and all these attacks take practical complexities 
which have been fully verified by our experiments. Com-
pared to the existing cryptanalytic results of QUARK, we 
can distinguish U-QUARK/D-QUARK/S-QUARK/C-
QUARK up to 157/171/292/460 rounds with increas-
ing 2/5/33/8 rounds respectively. The complexities of the 

attacks of U-QUARK/D-QUARK/S-QUARK/C-QUARK 
on the above rounds are 228/219/222/223 respectively. As far 
as we know, all of these results have been the best thus far.

Conclusion
In this paper, we propose an improved CDA on QUARK. 
One improvement is that we could obtain a set of good 
input differences by the proposed method to select the 
input difference. Another improvement is that we pro-
posed an algorithm to automatically impose conditions 
to deal with the complex condition expressions. Then, 
we apply the improved CDA on QUARK and obtain the 
corresponding improved analytic results. With the two 
improvements, the bias of the difference of the output bit 
at a higher round  can be detected. Furthermore, all the 
cryptanalytic results are verified by practical experiments 
and to the best of our knowledge, these results have been 
the best so far. In the future, the conditions of other cryp-
tosystems can hopefully be dealt with by our automatic 
condition imposing algorithm in the CDA.

Appendix
Feedback functions of QUARK
U‑QUARK
U-QUARK is the lightest flavor of QUARK. It was 
designed to provide 64-bit security, and to admit a 
parallelization degree of 8. It has sponge numbers 
r = 8, c = 128, b = 136, n = 136. The feedback functions 
for U-QUARK is defined as follows.

f (X) = X0 + X9 + X14 + X21 + X28 + X33 + X37 + X45 + X50 + X52

+ X55 + X55X59 + X33X37 + X9X15 + X45X52X55 + X21X28X33

+ X9X28X45X59 + X33X37X52X55 + X15X21X55X59

+ X37X45X52X55X59 + X9X15X21X28X33

+ X21X28X33X37X45X52,

g(Y ) = Y0 + Y7 + Y16 + Y20 + Y30 + Y35 + Y37 + Y42 + Y49 + Y51 + Y54

+ Y54Y58 + Y35Y37 + Y7Y15 + Y42Y51Y54 + Y20Y30Y35

+ Y7Y30Y42Y58 + Y35Y37Y51Y54 + Y15Y20Y54Y58

+ Y37Y42Y51Y54Y58 + Y7Y15Y20Y30Y35 + Y20Y30Y35Y37Y42Y51,

h(X ,Y , L) = L0 + X1 + Y2 + X4 + Y10 + X25 + X31 + Y43 + X56 + Y59

+ Y3X55 + X46X55 + X55Y59 + Y3X25X46 + Y3X46X55

+ Y3X46Y59 + L0X25X46Y59 + L0X25.
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D‑QUARK
D-QUARK is the second-lightest flavor of QUARK. 
It was designed to provide 80-bit security, and to 
admit a parallelization degree of 8. It has parameters 
r = 16, c = 160, b = 176, n = 176 . D-QUARK uses the 
same function f as U-QUARK, but with taps 0, 11, 18, 19, 
27, 36, 42, 47, 58, 64, 67, 71, 79 instead of 0, 9, 14, 15, 21, 
28, 33, 37, 45, 50, 52, 55, 59, respectively. The function g 
is also the same as U-QUARK, but with taps 0, 9, 19, 20, 
25, 38, 44, 47, 54, 63, 67, 69, 78 instead of 0, 7, 15, 16, 20, 
30, 35, 37, 42, 49, 51, 54, 58, respectively. The function h 
is defined as:

S‑QUARK
S-QUARK is the second-heaviest flavor of QUARK. 
It was designed to provide 112-bit security, and to 
admit a parallelization degree of 16. It has parameters 
r = 32, c = 224, b = 256, n = 256 . S-QUARK uses the 
same function f as U-QUARK, but with taps 0, 16, 26, 28, 
39, 52, 61, 69, 84, 94, 97, 103, 111 instead of 0, 9, 14, 15, 
21, 28, 33, 37, 45, 50, 52, 55, 59, respectively. The func-
tion g is also the same as U-QUARK, but with taps 0, 13, 
28, 30, 37, 56, 65, 69, 79, 92, 96, 101, 109 instead of 0, 7, 
15, 16, 20, 30, 35, 37, 42, 49, 51, 54, 58, respectively. The 
function h is defined as:

C‑QUARK
C-QUARK is the heaviest flavor of QUARK. It was 
designed to admit a parallelization degree of 32. It has 
parameters r = 64, c = 320, b = 384, n = 384 . The feed-
back functions for C-QUARK is defined as follows.

h(X ,Y , L) = L0 + X1 + Y2 + X5 + Y12 + Y24

+ X35 + X40 + X48 + Y55

+ Y61 + X72 + Y79 + Y4X68

+ X57X68 + X68Y79 + Y4X35X57

+ Y4X57X68 + Y4X57Y79

+ L0X35X57Y79 + L0X35.

h(X ,Y , L) = L0 + X1 + Y3 + X7 + Y18 + Y34

+ X47 + X58 + Y71 + Y80 + X90

+ Y91 + X105 + Y111 + Y8X100

+ X72X100 + X100Y111 + Y8X47X72

+ Y8X72X100 + Y8X72Y111

+ L0X47X72Y111 + L0X47.

Conditions for U‑QUARK, D‑QUARK and C‑QUARK
U‑QUARK
The IV bits needed to set as ’0’ are listed as follows:

The IV bits needed to set as ’1’ are listed as follows:

f (X) = X0 + X13 + X34 + X65 + X77

+ X94 + X109 + X127 + X145 + X157

+ X140 + X159X157 + X109X94

+ X47X13 + X157X145X127

+ X94X77X65 + X159X127X77X13

+ X157X145X109X94

+ X159X157X65X47

+ X159X157X145X127X109

+ X94X77X65X47X13

+ X145X127X109X94X77X65,

g(Y ) = Y0 + Y21 + Y57 + Y60 + Y94

+ Y112 + Y125 + Y133 + Y152

+ Y157 + Y146 + Y159Y157

+ Y125Y112 + Y36Y21 + Y157Y152Y133

+ Y112Y94Y60 + Y159Y133Y94Y21

+ Y157Y152Y125Y112

+ Y159Y157Y60Y36

+ Y159Y157Y152Y133Y125

+ Y112Y94Y60Y36Y21

+ Y152Y133Y125Y112Y94Y60,

h(X ,Y , L) = X25 + Y59 + Y3X55 + X46X55

+ X55Y59 + Y3X25X46+

Y3X46X55 + Y3X46Y59

+ X25X46Y59L0 + X25L0 + L0

+ X4 + X28 + X40 + X85

+ X112 + X141 + X146 + X152

+ Y2 + Y33 + Y60 + Y62

+ Y87 + Y99 + Y138 + Y148.

s11, s26, s27, s28, s33, s36, s43, s46, s50, s51,

s55, s58, s61, s66, s67, s76, s78, s81, s84, s85,

s88, s89, s90, s91, s92, s93, s94, s96, s101, s106,

s111, s112, s114, s115, s118, s120, s122, s128, s135.

s9, s21, s23, s38, s40, s47, s52, s56, s57, s59, s60, s64, s80, s87, s97, s103,

s105, s107, s108, s109, s110, s117, s123, s127, s133.
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The other condition expressions are listed as follows:

D‑QUARK
The IV bits needed to set as ’0’ are listed as follows:

s0 = s1 + s4 + s14 + s31 + s37 + s68 + s70,

s1 = s2 + s5 + s10s16s22s29s34 + s10s16 + s10 + s16s22 + s22s29s34

+ s22 + s29 + s32 + s34s53 + s53 + s69 + s71 + s79 + 1,

s3 = s2 + s6 + s16 + s35 + s70 + s72 + s73 + s113,

s4 = s7 + s34 + s71 + s73 + s113 + s125s129 + s125 + s130,

s8 = s32s53s134 + s53s62 + s62s134 + s77 + s124 + s126s129 + s126

+ s134 + 1,

s12 = s8 + s22 + s29 + s53 + s86 + s119 + 1,

s14 = s13 + s17 + s22 + s34 + s44 + s65 + s83 + s124,

s17 = s3 + s4 + s7 + s12s18 + s12 + s24 + s31 + s34 + s53 + s71

+ s73 + s130,

s19 = s16 + s24s30 + s24 + s29 + s65 + s83 + s126,

s20 = s6 + s7 + s10 + s31s77 + s31 + s34 + s37 + s62 + s77,

s42 = s10 + s13 + s18s24 + s18 + s37 + s54 + s65 + s77 + s79,

s44 = s12 + s20 + s25 + s32 + s42 + s79 + 1,

s49 = s12 + s13 + s16 + s37 + s62 + s82 + 1,

s82 = s4 + s5 + s8 + s13s19s25s32s37 + s13s19 + s13 + s18

+ s25s32s37 + s25 + s32 + s35 + s37 + s54 + s72,

s83 = s12 + s39 + s86 + s113 + s119 + s125 + s130s134 + s130,

s95 = s17 + s18 + s31 + s48 + s54 + s62,

s99 = s22 + s25 + s119s124 + s119 + s124s126 + s124 + s126 + s131

+ s132 + 1,

s100 = s3 + s6 + s70 + s72 + s73 + s77 + s86 + s113 + s119 + s121s124

+ s121 + s124 + 1,

s102 = s5 + s8 + s35 + s72 + s74 + s75 + s82 + s121 + s126s130,

s104 = s7 + s10 + s31s77 + s31 + s37 + s62 + s74 + s77 + s116 + s125 + 1,

s116 = s5 + s6 + s14s20 + s14 + s19 + s42 + s73 + s75 + s83,

s119 = s1 + s4 + s31 + s68 + s70 + s98.

s32, s52, s76, s78, s113, s133, s134, s138, s150, s164, s166, s167, s168, s169.

The IV bits needed to set as ’1’ are listed as follows:

s60, s68, s115, s141, s147, s149, s155, s157, s159, s160, s163.
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The other condition expressions are listed as follows:

s0 = s1 + s5 + s11s19s27s36s42 + s11s19 + s11s36s58s79 + s11 + s18

+ s19s27s71s79 + s27s36s42s47s58s67 + s27s36s42 + s27 + s35s57s92

+ s36 + s40 + s42s47s67s71 + s42s47 + s42 + s47s58s67s71s79 + s47

+ s48 + s57s92 + s57 + s58s67s71 + s58 + s64 + s67 + s71s79 + s71

+ s72 + s88 + s90 + s92 + s100 + s112 + s143,

s2 = s6 + s36s58s93 + s41 + s49 + s58s69s93 + s58s69 + s69s93 + s73

+ s91 + s98s108 + s98 + s101 + s109 + s114 + s127 + s136

+ s143s156s158 + s143 + s144 + s152 + s156 + s158 + 1,

s8 = s4 + s38s95 + s38s170 + s43 + s51 + s71s170 + s71 + s75 + s91

+ s93 + s95s170 + s100s110s116s129s135 + s100s110 + s100 + s103

+ s111 + s116s129s135 + s116 + s129 + s135 + s145s158 + s145 + s146

+ s152 + s154 + s158 + s170 + 1,

s9 = s13 + s43s65s100 + s43s65s175 + s48 + s56 + s65s100s175 + s80

+ s96 + s98 + s108 + s116 + s120 + s121s165s174 + s121

+ s140s143s165 + s140s143 + s140 + s143 + s151 + s165s174 + s165

+ s175 + 1,

s10 = s5 + s6 + s16s24 + s16s41s63s84 + s16 + s23 + s40s62s97

+ s40s62s172 + s41 + s45 + s47 + s53 + s62s73s97 + s62s73

+ s62s97s172 + s63 + s69 + s72 + s73s97 + s73s172 + s77 + s93

+ s95 + s105 + s117 + s148 + s154 + s172 + 1,

s17 = s13 + s47s69s104 + s47 + s69s80s104 + s69s80 + s80s104 + s84 + s100

+ s102 + s109s119 + s109 + s112 + s120 + s124 + s125 + s154 + s161,

s21 = s22 + s26 + s39 + s48s57s63 + s48 + s56 + s57 + s61 + s69 + s79

+ s85 + s109 + s111 + s121 + s170,

s44 = s4 + s5 + s9 + s15s23s31s40s46 + s15s23 + s15s40s62s83 + s15

+ s22 + s23s31s75s83 + s31s40s46s51s62s71 + s31s40s46 + s31

+ s39s61s96 + s39s61s171 + s40 + s46s51s71s75 + s46s51 + s46

+ s51s62s71s75s83 + s51 + s61s72s96 + s61s72 + s61s96s171

+ s62s71s75 + s62 + s71 + s72s96 + s72s171 + s75s83 + s75 + s92

+ s94 + s104 + s116 + s153 + s171 + 1.
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C‑QUARK
The IV bits needed to set as ’0’ are listed as follows:

The IV bits needed to set as ’1’ are listed as follows:
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