
Fernandez et al. Cybersecurity (2022) 5:7
https://doi.org/10.1186/s42400-022-00109-w

RESEARCH

Abstract security patterns and the design
of secure systems
Eduardo B. Fernandez1*  , Nobukazu Yoshioka2, Hironori Washizaki3 and Joseph Yoder4 

Abstract 

During the initial stages of software development, the primary goal is to define precise and detailed requirements
without concern for software realizations. Security constraints should be introduced then and must be based on the
semantic aspects of applications, not on their software architectures, as it is the case in most secure development
methodologies. In these stages, we need to identify threats as attacker goals and indicate what conceptual security
defenses are needed to thwart these goals, without consideration of implementation details. We can consider the
effects of threats on the application assets and try to find ways to stop them. These threats should be controlled with
abstract security mechanisms that can be realized by abstract security patterns (ASPs), that include only the core func-
tions of these mechanisms, which must be present in every implementation of them. An abstract security pattern
describes a conceptual security mechanism that includes functions able to stop or mitigate a threat or comply with
a regulation or institutional policy. We describe here the properties of ASPs and present a detailed example. We relate
ASPs to each other and to Security Solution Frames, which describe families of related patterns. We show how to
include ASPs to secure an application, as well as how to derive concrete patterns from them. Finally, we discuss their
practical value, including their use in “security by design” and IoT systems design.

Keywords:  Security patterns, Secure software development, Security requirements, Secure software architecture, IoT
systems design

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

Introduction
When solving a problem, we should try to produce first
an abstract, conceptual solution, before we get con-
cerned with implementation details. Those details may
obscure the objectives of the solution adding unneces-
sary complexity and might make us overlook the possi-
bility of solving a similar problem in the same way. We
need to understand the problem before we can solve it;
according to Polya: “Visualize the problem as a whole as
clearly and as vividly as you can. Do not concern your-
self with details for the moment” (Polya 1957). Building
a software application is solving a specific type of prob-
lem, where the abstract solution must be realized using

software. In the requirements and analysis stages of soft-
ware development we are trying to understand the prob-
lem, it is too early to introduce implementation aspects
that just would make the problem harder. This is also true
for security. Security is a quality aspect that constrains
the behavior of applications by imposing access and use
restrictions on the data and other assets, which means
that the requirements stage is the appropriate stage to
start addressing security. We only want to indicate at this
stage which security controls are needed, not their most
efficient or convenient implementation. If we consider a
financial application example, we only want to specify the
business rules of accounts, customers, and transactions
with their corresponding restrictions. These restrictions
may include: “customers are the only ones who can per-
form transactions on their own accounts”, “an account
owner can close his/her account”, and similar type of con-
straints. The constraints come from the semantics of the

Open Access

Cybersecurity

*Correspondence: fernande@fau.edu
1 Department of Electrical Engineering and Computer Science, Florida
Atlantic University, Boca Raton, FL, USA
Full list of author information is available at the end of the article

http://orcid.org/0000-0002-5109-4591
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s42400-022-00109-w&domain=pdf

Page 2 of 17Fernandez et al. Cybersecurity (2022) 5:7

application—they may reflect business rules and regula-
tions, and from the necessity to defend against possible
threats. At this stage, we can add patterns (or other arti-
facts), to define abstract security mechanisms to express
these restrictions. From our concern for security, by pat-
tern we mean a security pattern, an encapsulated solution
to a security problem (Fernandez 2013; Steel et al. 2005).
These abstract patterns would include only the funda-
mental characteristics of the security mechanism, not
including implementation aspects. In Avgeriou (2003),
we introduced1 the idea of abstract security pattern
(ASP), that describes a conceptual security mechanism
that realizes one or more security policies able to con-
trol (stop or mitigate) a threat or comply with a security
regulation or policy. Most works using security patterns
(Blakeley and Heath 2004; Fernandez 2013; Schumacher
et al. 2006; Steel et al. 2005) apply concrete patterns,
which provide protection at specific architectural levels
or components, e.g., secure virtual address space (VAS)
in operating systems (Fernandez 2013). In fact, an exami-
nation of the literature did not find any work on patterns
(security or other types), where abstraction is explic-
itly considered. While this concept is mentioned in the
patterns of the GOF (Gamma et al. 1994), they did not
develop their possibilities. We develop here the concept
of ASP based on the definition above and we show its
possibilities. The common context of all Abstract Secu-
rity Patterns is the problem space of the corresponding
applications, that can be expressed using domain models
for specific knowledge areas. ASPs can be related to each
other using pattern diagrams or more precisely through
Security Solution Frames. Pattern diagrams indicate how
patterns relate to each other, showing the contribution a
pattern brings to another. Security solution frames (SSFs)
are sets of patterns that correspond to specific concerns
of a solution, e.g., authentication (Uzunov et al. 2015a, b;
Uzunov and Fernandez 2021).

Some of the ASPs correspond to standard security
mechanisms, e.g., Access control (Authorization and Ref-
erence Monitor), Security Logger/Auditor, and Authen-
ticator. Others may specify more detailed aspects, e.g.,
Access Control/Authorization models including the
Access Matrix, role-based access control (RBAC), and
Multilevel models (Fernandez 2013); although those may
not be strictly abstract models, they correspond to insti-
tution policies. Starting from ASPs, when developing
the lifecycle steps of a complete application we can use

a hierarchy of patterns going from abstract security pat-
terns to platform-oriented versions of these patterns and
their code realizations.

ASPs are different from principles of good security
design, e.g., Single-Point-of-Access (Yoder and Barcalow
2000) or Need to Know (Fernandez et al. 2011), even if
these can be represented as patterns. ASPs correspond
to application defenses, intended to be realized later by
specific computational mechanisms, they do not describe
principles, that may have many realizations. In each use
case of the requirements stage we can specify what secu-
rity controls we need and in the conceptual model of the
analysis stage we add the corresponding ASPs after we
have enumerated the expected threats.

Our contributions include:

•	 Development and characterization of the concept of
ASP by means of analysis and examples.

•	 Description of the relationships of ASPs to other
ASPs and to SSFs to structure the defenses needed
for an application.

•	 Demonstrating the value of ASPs by showing how
they can be used to build conceptual models, to
derive new patterns, and other possible uses for
secure application development, including security
by design and IoT systems design.

“Security patterns and security solution frames” sec-
tion presents some background, while “Abstract security
patterns (ASPs)” section discusses the nature of ASPs
and presents a complete example of one of them. “ASP-
based hierarchies” section considers the properties of
ASP-based hierarchies, while “Relationships between
ASPs and security solution frames” section relates ASPs
to SSFs. “ASPs in secure conceptual models” section
shows how to use ASPs to build secure conceptual mod-
els. “Deriving concrete patterns from ASPs” section illus-
trates the derivation of concrete patterns starting from
ASPs. “Formalization of ASPs” section formalizes ASPS,
while “Evaluation of effectiveness” section evaluates their
effectiveness. “Related work and discussion” section dis-
cusses related work, while “Conclusions and future work”
section presents some conclusions and possible future
work.

Security patterns and security solution frames
A security pattern is a solution to a security problem,
intended to control (stop or mitigate) a specific type
of threat by defining a security mechanism, or a way to
realize a security policy or regulation, applicable in a
given context (Fernandez 2013; Schumacher et al. 2006).
The problem solved by the pattern is briefly described
in its “Intent” section and elaborated in a “Problem”

1  We introduced the idea in a two-page paper (Fernandez et al. 2008), but did
not develop its properties. We further developed the idea in (Fernandez et al.
2014). This paper considerably expands these previous works. We have also
published four complete ASPs (Fernandez et al. 2016, 2018;, 2019, 2020).

Page 3 of 17Fernandez et al. Cybersecurity (2022) 5:7 	

section. A set of forces define constraints for the solu-
tion, e.g., “the solution must accommodate a variety of
users”. The solution is typically expressed using UML
class, sequence, state, and activity diagrams (although
we usually need only one or two of these models). A set
of consequences indicate how well the solution satisfied
the forces; in particular, how well the attacks were con-
trolled, or a regulation was fulfilled. An implementation
section provides guidelines on how to use the pattern in
an application, indicating what steps are needed, their
possible realizations, and variants. A “related patterns”
section enumerates other patterns that complement the
pattern or that provide alternative solutions.

Security patterns are classified as architecture patterns
because they describe global architecture concepts, e.g.,
“what type of authentication is needed to control access
for the users of a system?” A few of them can also (or
instead) be considered as design patterns because they
handle aspects of the security code of a component. ASPs
are in effect a variety of analysis patterns. An analysis
pattern describes a semantic aspect of an application, e.g.,
the description of types of accounts in a financial institu-
tion (Fowler 1997). Some security patterns are more use-
ful by looking at them in more than one perspective. For
example, the Security Logger in (Steel et al.2005) concen-
trates on the software implementation of this pattern, so
this is a design pattern; the Security Logger in Fernandez
(2013) is an ASP because it emphasizes the core functions
of this pattern. If we combine both perspectives, this pat-
tern can be useful to software architects and developers.
We call the patterns derived from an ASP concrete pat-
terns, because they refer to some specific software envi-
ronment, e.g., a distributed system. There are different
degrees of concreteness depending on how specific they
are. It is possible to even define patterns with contexts
using specific technologies or architectural styles, e.g.,
IoT patterns (van Heesch et al. 2011; Washizaki et al.
2021). In the development of a software system, we need
to use patterns for several architectural levels.

Security solution frames (SSFs) are sets of patterns that
correspond to a specific aspect or concern of a security
solution (Uzunov et al. 2015a; Uzunov and Fernandez
2021). Their vertical grouping collects together all the
patterns that are related to a security concern, often in
a hierarchical structure; an Authentication SSF could
look like Fig. 4 (Uzunov and Fernandez 2021). Different
levels of abstraction (concreteness) of a security mecha-
nism define a vertical structuring, while we can define a
horizontal association by connecting different concerns.
Security patterns and SSFs are not very useful in isola-
tion (Fernandez 2013; Uzunov et al. 2015b), they should
be applied in the stages of a systematic methodology to
build secure systems.

We have developed a systematic way of enumerating
threats (Fernandez 2013) which consists of analysis of the
flow of events in a use case or a sequence of use cases, in
which each activity is analyzed to uncover related threats.
This analysis should be performed for all the system uses
cases. We use pattern diagrams and unified modeling
language (UML) class, sequence, and use case diagrams
to describe patterns and architectures. A pattern diagram
(Buschmann et al. 1996) shows the relationships between
patterns, where patterns are shown as rounded rectan-
gles; each arc from pattern A to pattern B indicates the
contribution of pattern A to the pattern it points (B).

A domain model (DM) is a model of an area of knowl-
edge, e.g., health systems, using an appropriate language.
A DM can be defined using sets of related patterns that
represent specific aspects of the domain. The compo-
nents of domain models are usually described in UML
or some ontology language like OWL. A reference archi-
tecture (RA) is an abstract architecture, with concepts of
a particular domain (or set of domains), with no imple-
mentation aspects (Avgeriou 2003; Taylor et al. 2010).
RAs are reusable, extensible, and configurable; they can
be built as a set of related patterns describing some type
of architecture and they can be instantiated into a con-
crete software architecture by adding implementation
aspects. Security reference architectures (SRAs) include a
set of ASPs (or other artifacts) that provide defenses for
the threats of a reference architecture (Fernandez 2015).

Abstract security patterns (ASPs)
As indicated earlier, an ASP is a security pattern that
describes a conceptual semantic restriction in a domain,
which can be a defense to a threat or a way to comply with a
regulation, with no implementation aspects. That is, an ASP
provides only the necessary core functions for those objec-
tives. In this section, we use the Authenticator ASP as exam-
ple (developed as a complete pattern in (Fernandez et al.
2018); further examples of ASPs include Secure IaaS (Fer-
nandez et al. 2016), Secure Network Segmentation (Fernan-
dez et al. 2019), and Secure Publish/Subscribe (Fernandez
et al. 2020). The Intent section of an Authenticator pattern
as described in (Fernandez 2013) is: “A user or system (sub-
ject) requesting access to a system identifies itself, how does
the system verify that the subject is who it says it is? The
subject must present some information that is recognized
by the system as identifying this subject. After being authen-
ticated, the requestor is given some proof of this fact.”

Authentication restricts access to a system to only
registered users; it handles the threat where an intruder
enters a system and tries to perform unauthorized access
to information or other resources.2 This definition is what

2  Systems usually also have another level of control that restricts access to
specific resources, this is Authorization.

Page 4 of 17Fernandez et al. Cybersecurity (2022) 5:7

is usually called entity authentication (Song et al. 2003).
There are many ways to perform this authentication, that
go from manual ways, as done in voting places during
elections, to purely automatic ways, as when accessing a
restricted web site. Authentication as an abstract func-
tion requires a core sequence of activities:

1.	 The subject requests to enter a system providing its
identity and some proof of identity.

2.	 If the system, using its identity information, recog-
nizes the subject, it grants it entrance to the system
and creates for it a proof of authentication (token) for
later use. If not, the request is denied.

Concrete realizations of this sequence may implement
these steps in different ways, but all must perform these
two steps. Figure 1 is the class model of the Abstract
Authenticator, which shows the classes used to perform
the activities above. Class Subject indicates the active
entity that requests access to the system through some

type of interface to class Authenticator by providing a
Proof of Identity (owned by the subject). The Authen-
ticator then searches class Authentication Information
to decide if the subject is legitimate. Class Authentica-
tion Information includes information previously stored
by the subject, which is needed to authenticate it, e.g., a
list of passwords, a set of fingerprints, a cryptographic
protocol, a history of past interactions, or similar. The
Authenticator provides the subject with a Proof of
Authentication, so that the requestor needs not authen-
ticate itself again in later accesses. Dynamic models for
this pattern include sequence diagrams for the use cases
“Register a subject” and “Request access”, which real-
ize the scenario above (Fernandez 2013; Fernandez et al.
2018). Figure 2 shows the successful execution of the use
case “Request access”. This diagram performs the steps
described above: after validating the proof of identity
presented by the subject; the Authenticator then creates
a proof of authentication which is assigned to the subject.

Even in the absence of any implementation, we can
define abstract threats in the ASP. These threats repre-
sent violations of the semantic constraints of the applica-
tion. For the Abstract Authenticator we can have:

•	 T1. Present fake or stolen proof of identity, to let the
attacker impersonate a legitimate subject and get
access to the system.

•	 T2. Steal a proof of authentication for later attempts
to enter the system.

•	 T3. Unauthorized reading of authentication informa-
tion to obtain a proof of identity.

•	 T4. Unauthorized modification of authentication
information, to produce disruption.

Subject Authenticator
request

* 1Authent

Proof of
Identity

Proof of
Authentication

Authentication
Information

11..* 1

<<create>>

Fig. 1  Class diagram of the abstract authenticator pattern

: Subject
: Authenticator

request

<<actor>> : Authentication

OK

verify (subject, proof)Authentication
(subject, proof)

: Token create
(subject)

assign
(token)

Info

Fig. 2  Sequence diagram for the use case “authenticate a subject”

Page 5 of 17Fernandez et al. Cybersecurity (2022) 5:7 	

•	 T5. Register a subject that has more privileges using
false information and then impersonate that subject.

Figure 3 shows the class model of a concrete type of
Authenticator. The Credential-based Authenticator pat-
tern includes the complete Abstract Authenticator func-
tions where its classes are reinterpreted as: Principal
corresponds to a responsible subject, Proof of Identity
becomes a Credential presented by the Principal, Proof
of Authentication becomes a Validated Credential, and
the Authentication Information is a procedure to validate
credentials (Fernandez 2013). For X.509 Certificates the
Certification Authority generates credentials, and the
Credential includes a set of Attributes that carry the sig-
nature of a Certification Authority, authenticate a sub-
ject, and maybe include authorization rights and other
descriptions of the subject. Authentication is performed
by the Authenticator using the certificate and confirming
the validity of the Certification Authority that issued the
credential.

The threats to the Credential-based Authenticator
include implementation-oriented versions of the abstract
threats; for example, using a stolen certificate, as well as
new threats like using expired credentials (Morrison and
Fernandez 2006).

ASP‑based hierarchies
We can define hierarchies that show the concrete pat-
terns that can be derived from ASPs. For example, Fig. 43
describes a hierarchy of authenticators. ASP-based hier-
archies are a way to organize Security Solution Frames,
discussed in “Security patterns and security solution
frames” section. We show relationships between patterns
using pattern diagrams (Buschmann et al. 1996), where
rounded rectangles represent patterns and directed arcs
indicate the contribution of a pattern to another pattern.
The patterns in these diagrams can have relationships
such as generalization and aggregation. A generalization
hierarchy can relate several patterns with the same con-
cern. The Credential-based Authentication is a concrete
security pattern derived from the Abstract Authentica-
tor, as discussed earlier. Credential-based Authenticators
use portable proofs of identity and include X.509 Cer-
tificates and SAML-based Authentication, among others.
The X.509 Authenticator (Fig. 5) requires an extra class
to describe the Certification Authority, while SAML-
based Authentication (Fig. 6) uses assertions and
requires accessing a specific site for validation. The
Password-based Authenticator uses a List of Passwords
as Authentication Information (Fig. 7). We can deduce
some properties, using the Authenticator pattern as an
example.

The class models of the concrete patterns derived from
an ASP must include all the classes of the ASP from
which they were derived as well as classes that handle
new aspects required by the specific environment. There
may be new or modified attributes and operations in
the classes derived from the ASP. If Ci = set of classes in
ASPi, Cci = set of classes in a concrete pattern derived
from ASPi, and Cnew = new classes in concrete pattern
Cci, we have: Cci = Ci ∪ Cnew. By “class” we mean the
information in that class; the actual class may be split or
merged with another class in the concrete levels but the
application’s semantic information in the ASP must be
preserved.

The context defines the environment where the pat-
tern is valid and any conditions for its application; it is
the main determinant of the difference of a pattern with
another in a hierarchy. In general, the context of a pattern

Principal Authenticator
request

* 1Authent

Credential Validated
Credential

Authentication
Information

11..* 1

<<create>>

Fig. 3  Class diagram of the credential-based authenticator pattern

Authenticator

Credential-based
Authenticator

Password-based
Authenticator

X.509
Certificate

SAML-based
Authenticator

Fig. 4  Pattern diagram for an authentication hierarchy

3  This is a partial authentication hierarchy; there are many other ways to per-
form authentication.

Page 6 of 17Fernandez et al. Cybersecurity (2022) 5:7

(CL) subsumes the context of its descendants: CLi ⊇ CLj ,
where i precedes (it is higher) j in the hierarchy. For
example, the context of an Abstract Authenticator applies
to any domain while the context of a Credential-based
Authenticator is valid only for distributed systems, and
the context of an X.509 certificate applies only to distrib-
uted systems that follow this standard. The threats of the
concrete patterns are specific realizations of the abstract
pattern’s threats using the changed context, or are new

threats due to the extra elements in the class diagram
(classes or attributes); that is Tj ⊇ Ti , where i precedes j
in the hierarchy.

The forces in a pattern define constraints on its solu-
tion indicating a tension that motivates the need for the
pattern. Forces are given names indicating which aspect
they constrain. The following forces apply to the possible
solution of the Abstract Authenticator:

•	 Closed system If the authentication information pre-
sented by the user is not recognized, no access is
granted (Saltzer and Schroeder 1975). In an open
system, all subjects can have access except those who
are blacklisted for some reason. A closed system pro-
vides a higher degree of security, but some systems
are open because of their objectives.

•	 Registration Users must register their identity and
provide identity information to let the system recog-
nize them later.

•	 Flexibility Large systems may have a variety of indi-
viduals or systems (users) who require access to the
system, as well as a variety of system units with dif-
ferent access restrictions. We must be able to handle
this heterogeneity appropriately, or we risk security
exposures.

•	 Dependability We need to authenticate users in a
reliable and secure way. This means a robust pro-
tocol and a high degree of availability. Otherwise,
users may deceive the authentication process or
enter when the system authenticator is down.

•	 Protection of authentication information Users
must not be able to read or modify the authen-
tication information. Otherwise, they can give
themselves access to the system, simulate to be
somebody else, or disrupt the access of legitimate
subjects.

Principal Authenticator
request

* 1Authent

X.509
Certificate

Validated
Certificate

Certification
Info

11..* 1

<<create>>

Certification
Authority

*

1

Fig. 5  Class model of the X.509-based authenticator

Principal
request

* 1Authent

SAML
Assertion

Validated
Assertion

Certification
Info

11..* 1

*

Authenticator

Fig. 6  Class model of the SAML-based authenticator

Subject Authenticator
request

* 1Authent

Password Session Password
List

11 1

<<create>>

Fig. 7  Class model of the password-based authenticator

Page 7 of 17Fernandez et al. Cybersecurity (2022) 5:7 	

•	 Simplicity The authentication process must be rela-
tively simple; otherwise, the users or administrators
may be confused. User errors are annoying to them,
administrator errors may lead to security exposures.

•	 Reach Successful authentication only gives access to
the system, not to any specific resource of the system.
Access to these resources must be controlled using
other mechanisms, typically authorization.

•	 Tamper freedom It should be very difficult to falsify
the proof of identity presented by the user; otherwise
we can have impostors.

•	 Cost There should be tradeoffs between security and
cost, higher security can be obtained at a higher cost.

•	 Performance (response time) Authentication should
not take a long time or users will be annoyed. How-
ever, more secure authentication methods may take a
longer time.

•	 Frequency Subjects should not have to authenti-
cate often. Frequent authentications waste time and
annoy the users.

Note that there are no implementation aspects in these
forces, i.e., they describe security requirements for the
solution that complement its conceptual class model. In
fact, these forces apply to any system where access should
be restricted only to specific subjects. Concrete versions
of this pattern would add aspects related to their specific
context. For example, a Password-based Authenticator
would add (among other forces):

•	 Strength A password must be hard to discover, even
for an attacker who has access to the password file
and high computational power.

•	 Protection of Authentication Information The pass-
word file must not be accessible to the users. Other-
wise, they could use powerful computers to discover
passwords by trial and error.

•	 Validity There should be convenient ways to revoke
or invalidate registered passwords.

The forces of the ASP may appear under more specific
forms in a concrete pattern, e.g., in the examples above,
protection of authentication information takes specific
forms. New forces can be introduced to consider a new
context; in this example “Strength” is a new force, specific
to passwords (although it can be considered a special
case of tamper freedom).

The reverse of what happens for contexts is true about
forces and consequences, the forces in concrete patterns
include (maybe modified) those of the abstract pattern
plus new forces (and their consequences) due to their
more specific environments. That is: Fj ⊇ Fi , where i pre-
cedes j in the hierarchy.

Patterns in general are obtained by abstracting com-
mon concepts of implementations found in real systems
(best practices); ASPs can be obtained by abstracting the
properties of several concrete patterns or directly from
the security constraints of several applications. There is
no algorithm to produce ASPs, abstraction is a human
activity which depends on the experience and ability of
the pattern builder. Deciding what is really essential in
an ASP is not always clear and judgment is necessary; for
example, the first force of the Authenticator (closed sys-
tem) may be interpreted to be a property (principle) of
the system where it is used, and not of the pattern itself.

Relationships between ASPs and security solution
frames
Figure 4 shows authenticators related to each other by
generalization, e.g. an X.509 certificate pattern “is a” cre-
dential pattern. As shown later, there can be directed
associations between ASPs that describe peer associa-
tions between them. As discussed earlier, patterns can be
associated also by aggregation (Rumbaugh et al. 1999),
where a pattern is composed of other patterns.

An important use of ASPs is to identify and organize
SSFs. As indicated earlier, SSFs are solution structures
that encapsulate and organize security patterns; they
realize security requirements. SSFs can facilitate the
work of designers by collecting together all the relevant
patterns to realize some security requirements, guiding
the designer from an abstract conceptual level to a con-
crete implementation-oriented level. SSFs define hori-
zontal and vertical pattern structures. As shown in Fig. 4,
vertical structures are hierarchies of patterns specialized
going from ASPs to technological implementations. Hor-
izontal structures, security pattern families (SPFs), are
sets of peer-related patterns that complement each other
and define different aspects of a security policy. ASPs act
as roots of these hierarchies and can be used to charac-
terize SSFs, where each lower level is a pattern special-
ized for some specific context (Fig. 8). For example, an

Security
Solution
Frame

Security
Pattern
Family

1..*

ASP
1

Fig. 8  From SSFs to ASPs

Page 8 of 17Fernandez et al. Cybersecurity (2022) 5:7

SSF for Authentication includes (among others) a family
of Authenticator patterns, which includes Credential-
based Authenticator, Password-based Authenticator, and
others. If we add an Authorization/Access Control hier-
archy (as in Fig. 9), we would have an SSF, although Fig. 4
itself is also an SSF. Figure 9 relates an Authenticator
SSF to an Access Controller SSF. The Access Controller
includes an Authorizer, which defines authorization rules
that may correspond to and Access Matrix or an RBAC
model. The Authorizer must be complemented with a
Reference Monitor (Fernandez 2013) to enforce the rules.

We can draw an SSF in its own graph or draw sepa-
rate graphs for each level to correlate patterns from dif-
ferent families. The latter type of diagram is useful when
we want to understand a complete system; for example,
when building a banking application we can correlate
all the security patterns needed to protect accounts (see
next section). A given security pattern can belong to
more than one family or to more than one SSF. Ref. (Uzu-
nov et al. 2015a) contains complete descriptions of two
SSFs: Authorization and Security Information Manage-
ment. Authorization includes three SPFs: Conceptual
Authorization Model, Enforcement Architecture, and
Security Process. The Conceptual Authorization Model
SPF includes one ASP: Abstract Authorization. The
Enforcement Architecture SPF includes the ASP Abstract
Authorization Architecture. The Security Information
Management SSF contains the Policy Management SPF,
which in turn contains the ASP Abstract Policy Manager.
Reference (Uzunov and Fernandez 2021) contains SSFs
for secure communications.

A security cluster (SC) is a selection of patterns from
different SSFs (Fernandez and Yoshioka 2018). Formally:
SCa = {SSFi.pa, SSFj.pb, SSFk.pc,…}, where cluster SCa

combines patterns where SSF.pi denotes pattern i in an
SSF. SCs can be catalogued by defining a start SSF and
using it as index. Figure 10 (a group of pattern diagrams
representing SSFs) shows the construction of a Secu-
rity Cluster, SC1. To define SC1 the designer decided to
use credentials as authentication artefact, then selected
attribute-based access control (ABAC), for securing
its communications she chose the Advanced Encryp-
tion Standard, a symmetric encryption algorithm, and
finally used Distributed Logging. This specific selection
was based on the analysis of the expected threats of this

Authenticator

Credential
Authenticator

X.509
Certificate

Authenticator

Access Controller

Reference
MonitorAuthorizer

RBAC
Authorizer

Access
Matrix

Authorizer

subjectIdentity

Password
Authenticator

SAML
Authenticator

Security
Logger/
Auditor

logging

Fig. 9  Combining SSFs

Authen�cator

Distributed
Authen�cator

SSO Creden�al

Security
Logging

Distributed
Logging

Authorizer

RBACABAC

Encryp�on

AsymSym

AES

SC1

Fig. 10  An SC definition (from 11)

Page 9 of 17Fernandez et al. Cybersecurity (2022) 5:7 	

application, obtained by the method described in “Secu-
rity patterns and security solution frames” section. As
we have shown elsewhere, we can map threats to secu-
rity patterns that can stop them (Fernandez 2013; Uzu-
nov et al. 2015b). In a catalog, each SC description should
include recommended applications or include analysis
patterns where it would fit, as shown in Fig. 10.

ASPs in secure conceptual models
We show now how ASPs are useful to secure applica-
tions by simplifying the work of the designer, who may
not have much experience on security. Figure 11 shows
how abstract patterns can provide security controls to a
functional entity (Gollmann 2011). Pattern Functional
Entity represents some functional unit in a conceptual
model of an application and its basic security services
are described by patterns Authenticator, Access Con-
troller (showing some common authorization models),
and Security Logger. These patterns solve the problems
described below.

•	 Authenticator (Fernandez 2013; Fernandez et al.
2018). Controls access to the functional entity as a
whole unit. We described this pattern in “Abstract
security patterns (ASPs)” section.

•	 Authorizer (Fernandez 2013). Describes who is
authorized to access specific resources in the func-
tional entioty and how, in an environment in which
we have resources whose access needs to be con-
trolled. It indicates for each active entity, which
resources a subject can access, what it can do with
them, and under what conditions.

•	 Enforcer (Reference Monitor, Policy Enforcement
Point) (Fernandez 2013). Enforces authorizations
when a process requests access to an object. Done
through an abstract process that intercepts all
requests for resources from processes and deter-
mines if they are authorized by some rule.

•	 Access matrix (Fernandez 2013). Describes authori-
zation rules where subjects are individual users or
systems.

•	 Role-Based Access Control (RBAC) (Fernandez 2013).
Subjects are assigned rights based on their functions
or tasks in an environment in which there is a large
number of users or a large variety of resources.

•	 Multilevel Security pattern (Fernandez 2013). Defines
how to decide access in an environment with security
classifications for subjects and resources.

•	 Attribute-based access control (ABAC) (Priebe et al.
2004). Defines access to resources based on the
attributes of the subjects and the properties of the
objects.

•	 Security Logger (Fernandez 2013). Logs all security-
sensitive actions performed by subjects (who did
what to what data and when) and provides controlled
access to records for Audit purposes.

It is not necessary to attach these controls to each func-
tional entity; from the threat enumeration process we can
determine which services are actually required to stop
the threats (Fernandez 2013). Regulations and institution
policies may also require additional security mechanisms.
In general, we must not add in each entity all possible
security mechanisms, which results in systems that:

Authenticator

Access
Matrix RBAC

controls

Security Logger

Functional Entity

Access Control

logs access

authenticates

Authorizer

Enforcer

Multilevel ABAC

access access

Fig. 11  Entity security services

Page 10 of 17Fernandez et al. Cybersecurity (2022) 5:7

•Are overly complex, with many redundancies, which
bring administrative confusion, a source of possible
vulnerabilities.
•Have a high performance overhead, because of
redundant checks.
•Are costly, because most security mechanisms are
COTS components, and they have to be bought and
maintained.

There is also a basic difference between adding design
patterns and adding security patterns to an applica-
tion. Design patterns have no effect on the semantics of
the application; adding design patterns is optional and
is intended to improve some code aspect such as flex-
ibility, performance, or extensibility. Adding security
patterns, on the other hand, can make the application
more secure and unless we apply patterns to protect all
significant security vulnerabilities the application will
not be secure. Security is not based on local transfor-
mations as when using design patterns, but requires
a global transformation of the whole architecture. By
showing the needed security mechanisms and when
they are combined with SSFs, ASPs can simplify the
job of the designer who has now a guide to decide what
security mechanisms are needed according to the pos-
sible threats and what specific concrete patterns to use.
In this sense, they can effectively complement a secure
development methodology (Fernandez 2013; Uzunov
et al. 2015b).

Deriving concrete patterns from ASPs
We have written four patterns that can be used to dem-
onstrate the power of the ASP concept by showing the
derivation of concrete patterns from some ASPs. One
of them (Fernandez et al. 2018) shows derivation of
Authenticators in the style of “Security patterns and
security solution frames” section; starting from the
Authenticator ASP we derive the Credential-based
Authenticator. Another (Fernandez et al. 2019), start-
ing from a Network Segmentation ASP derives a pattern
for IoT Segmentation, which partitions a network of IoT
devices and other entities into subnetworks in order to
isolate groups of devices and entities with different secu-
rity requirements; IoT networks because of their het-
erogeneity have a large variety of threats different from
standard IT threats. Another (Fernandez et al. 2016),
describes the derivation of IaaS patterns in a cloud as
shown in Fig. 12. The Secure Infrastructure-as-a-Service
pattern describes the architecture required for the shar-
ing of distributed virtualized computational resources
such as servers, storage, and networks, including a set
of security services. The Secure Open IaaS describes the

architecture required for the sharing of distributed vir-
tualized computational resources such as servers, stor-
age, and networks, including a set of security services;
the implementation of these services is open source
and different architectures may have different security
services. The Secure Open Stack describes the architec-
ture required for the sharing of distributed virtualized
computational resources such as servers, storage, and
networks, including a set of security services; the imple-
mentation of these services is also open source and dif-
ferent architectures may have different security services
(OpenStack defines a standard that contains a set of
security services but specific implementations may have
additional security services). The Secure Concrete Open
Stack corresponds to a generic implementation of the
standard. This example shows that from a generalization
hierarchy of functional patterns we can derive a corre-
sponding hierarchy of security patterns. Finally, from a
Secure Publish/Subscribe ASP we derived an IoT Secure
Publish/Subscribe which introduces new defenses to
control the new threats present in that context (Fernan-
dez et al. 2020).

Formalization of ASPs
Many pattern authors include UML models, that are
semi-formal models, in the solution section of a pat-
tern. However, patterns are suggestions and this is not
a requirement, they are given as examples, not strict
guidelines that the designer must follow. Requir-
ing to follow the formalization of a pattern solution
would restrict the freedom of the designer when using
the pattern in her applications; a formal description
may constrain possible implementations or make

IaaS

Specific
Open Stack

Open IaaS

Open Stack

Secure IaaS

Secure Specific
Open Stack

Secure
Open Iaas

Secure
Open Stack

Fig. 12  Deriving secure IaaS patterns

Page 11 of 17Fernandez et al. Cybersecurity (2022) 5:7 	

additional assumptions that may modify the intended
meaning of the pattern. Also, many developers do not
have enough background to understand formal mod-
els; in fact, some authors avoid even UML models to
make their patterns more usable. However, there are
several drawbacks to the informal representation of
patterns (Warmer and Kleppe 2003; Dong et al. 2007):
informal specifications may be ambiguous, and pat-
tern solutions may not be able to be expressed pre-
cisely in an informal language; a pattern may have
some particular properties that characterize it, and
the application of a pattern should maintain these
properties. More important, formal specifications
allow the use of automated tools to check some prop-
erties; for example, object constraint language (OCL)
(Warmer and Kleppe 2003), allows querying the
model to find out new information. Formal specifica-
tions of patterns can be used to discover new patterns
or detect the use of patterns in large software systems.
Even if a pattern requires tailoring, starting from a
precise description facilitates its selection, applica-
tion, and implementation.

A common option is to add formal constraints to the
UML diagram of its solution. As indicated, OCL can
be used to define constraints on the data and to query
this data. For example, the following could be a post-
condition that describes that a proof of authentication
is created if the subject ID and its authentication infor-
mation are found in the Authentication Information
class:

ASP

P11

Pi1

P1j

Pik

. . .

. . .

Fig. 13  Metamodel for an ASP and its derived patterns

Another type of formalization is the use of ontologies;
an ontology for security patterns is shown in Pereira-Vale
and Fernandez (2019). That ontology applies to ASPs,
since they are security patterns. In that model, OWL
allows queries like: “Obtain the list of concerns of the
security patterns used in the lifecycle design stage for
operating systems contexts.”

Some researchers have formalized structural or syn-
tactic properties of design patterns. Ref. (Le Guennec
et al. 2000), proposed a set of modifications to the UML
1.3 meta-model to make it possible to model design pat-
terns and represent their occurrences in UML, with the
objective of facilitating automatic processing of applica-
tions using patterns. Ref. (Hamid et al. 2016) provided
a formal representation and its associated validation
mechanisms for the verification of security properties
of security patterns. Ref. (Dong et al. 2007) presented a
formal specification for design patterns based on first-
order logic, temporal logic of action, and Prolog.

Page 12 of 17Fernandez et al. Cybersecurity (2022) 5:7

To formalize the structure of ASPs and their derived
patterns we can use a semiformal approach, combin-
ing a metamodel with formal annotations (Washizaki
et al. 2009b). Figure 13 shows a metamodel for ASPs
and their derived patterns (subpatterns). We first
need to define what the UML operation of generali-
zation means for patterns. The UML security model
in the pattern solution is a set of classes and asso-
ciations; we can then define constraints among these
classes. A subpattern must preserve those constraints
and may possibly add more. Considering Fig. 3, where
we have a concrete pattern derived from the pattern
of Fig. 1, we can see that the derived pattern includes
all the classes of Fig. 1, renamed to indicate their dif-
ferent context. If we go down one more step in the
class hierarchy, we get Fig. 5 where there is a new
class. Note that the hierarchies starting from ASPs are
generalization trees.

We summarize the formal aspects of ASPs in Table 1,
where the following definitions apply: C is the set of
classes of a class model, CL is a set of contextual attrib-
utes, T is a set of threats, F is a set of forces, CSi is a set
of consequences, and RDi is the set of related patterns.
Then, we may define a pattern Pi as follows

Pi = (CLi, Ti, Fi, Ci, CSi, RDi)

Pi is an abstract or concrete pattern that provides a
solution composed by classes Ci in order to mitigate the
corresponding security problem consisting of threats Ti,
when considering specific forces Fi in the context of CLi,
resulting in consequences CSi. Alternative or comple-
mentary solutions are defined by RDi.

Also, a pattern is more than its solution; the texts
in its sections are very important guidelines for its
correct application. Ref. (Maña et al. 2013) did a for-
malization of complete security patterns (not just
their solutions), with the intention of enabling their
automatic handling. We try below to formalize all the
sections of the patterns; a set of assertions describe
the sections of each pattern. A formal language like
OCL, Z, or Alloy could be used to describe each sec-
tion more precisely, but we only use here standard
set notation, where a tuple is indicated as (…), a set
as {}, optional elements as [], ID is a unique identifier
assigned in a catalog for each pattern, SUD refers to
System Under Development. We first show the asser-
tions for ASPs and then assertions for their derived
patterns. A derived pattern (DPattern) shows only its
changes with respect to the ASP.

Table 1  Summary of ASPs structural formalization in OCL

The class models of the concrete patterns derived from an ASP must include all the classes of the ASP from which they were derived as well as
classes that handle new aspects. If Ci = set of classes in ASPi, Cci = set of classes in a concrete pattern derived from ASPi, and Cnew = new classes
in concrete pattern Cci, we have: Cci = Ci ∪ Cnew. In OCL:
context Cci
Cci:: = Ci- > union(Cnew)

The context of a pattern subsumes the context of its descendants: CLi ⊇ CLj , where i precedes (it is higher) j in the hierarchy. A CL defines a
domain of application (it includes a set of contextual attributes). However, the pattern context is not shown in the class model and OCL expres-
sions are not applicable

The threats of the concrete patterns are specific realizations of the ASP’s threats using the changed context, or are new threats due to the extra
elements in the class diagram (classes or attributes); that is, Tj ⊇ Ti , where i precedes j in the hierarchy and Ti is a list of the threats of pattern Pi.
Again, OCL constraints are not applicable because the threats are not shown in the class model of the pattern

The forces in concrete patterns include (maybe modified) those of the abstract pattern plus new forces due to their more specific environments.
If Fi is the list of forces of pattern Pi we have that: Fj ⊇ Fi , where i precedes j in the hierarchy. This relationship is also valid for the consequences of
ASP-based hierarchies.; that is, if CSi is the list of consequences of pattern Pi, we have: CSj ⊇ CSi if Pi precedes Pj in the hierarchy. OCL expressions
are not applicable

The related patterns in the derived patterns, RDj, include the related patterns of the ASP and those of the patterns above them in the hierarchy;
that is RDj ⊇ RDi

An invariant I in an ASP must be propagated to all its derived patterns, adjusting the variable names in the derived pattern classes. Each ASP has
its own invariants (see example above)

Page 13 of 17Fernandez et al. Cybersecurity (2022) 5:7 	

Page 14 of 17Fernandez et al. Cybersecurity (2022) 5:7

Evaluation of effectiveness
ASPs are abstract entities that can be implemented in
many ways; this means they cannot be evaluated with
respect to security or performance through experimen-
tation or testing. Evaluating a specific implementation
would not say anything about the model if its secu-
rity failed. As indicated above, patterns are suggestions
for designers, they do not require to be built exactly as
described; a designer can cut or add classes, rename
classes and attributes, or split classes, as far as their
semantics are respected. The evaluation of ASPs must
be based on how well they represent the relevant con-
cepts of the systems they describe, how well they handle
abstract threats, how complete they are, how precise they
are, how they can be applied to the design or evaluation
of systems, and how useful they are for other relevant
functions.

From the cases of ““ASP-based hierarchies”– “Deriving
concrete patterns from ASPs” sections, and our experi-
ence, we have found the following uses of ASPs:

•	 ASPs can be combined with other ASPs to cover all the
security concerns of an application, including all their
architectural levels if we use SSFs. In this way, they
can be applied during the stages of a secure systems
development methodology such as ASE (Uzunov
et al. 2015b) or similar. ASPs can also be combined
with patterns describing security principles or good
general design principles. For example, the Abstract
Authorizer can be combined with Need-to-Know
(Fernandez et al. 2011) to assign rights according
to the needs of the subjects; Single Point of Access
(Yoder and Barcalow 2000) can be combined with
Firewall (Saltzer and Schroeder 1975), to restrict the
placement of firewalls in a network.

•	 Can be used to check for security coverage in a com-
plete design One of the problems with protecting
complex systems is that it is hard for the designers to
see if all the high-level security threats have been cov-
ered with the applied defenses. This is much easier
when we work at the application level, we can enu-
merate all threats and find the corresponding secu-
rity patterns to defend against them; using SSFs we
can propagate the defenses to the lower levels. This
explicit handling of threats also allows evaluation of
the security degree reached by the design (Villagran-
Velasco et al. 2020), a security measure is the number
of threats covered by the security patterns present in
the design.

•	 Can guide the search for new patterns (pattern min-
ing) An abstract pattern defines a range of patterns
and one can see if corresponding patterns exist at all
the lower levels, including different environments,

e.g., web services or cloud computing. This was illus-
trated in “Deriving concrete patterns from ASPs” sec-
tion.

•	 Can serve as abstract prototypes for existing concrete
patterns and to verify they are complete with respect
to functions and threat coverage. Starting from an
abstract pattern it is easy to see what security con-
straints (forces, threats) must at least be applied at
a specific architectural level. For example, from an
ASP for VPNs we can derive TLS and IPSec VPNs
(Fernandez 2013). Other examples were shown in
“Relationships between ASPs and security solution
frames” section. The formalization section can help
building those patterns.

•	 Can serve as ways to connect and relate different
families of patterns. For example, a Communica-
tion Channel can use Intrusion Detection (see “ASP-
based hierarchies” and “Relationships between ASPs
and security solution frames” sections). If we build
a fairly extensive catalog of Security Clusters we can
simplify the work of developers.

•	 We can build Domain models and/or Security Refer-
ence Architectures using ASPs. As indicated, DMs and
SRAs are also abstract architectures.

•	 ASPs are a good basis to separate and classify distinct
patterns (Washizaki et al. 2009a). Pattern catalogs
usually include several varieties of the same security
pattern, perhaps with different names; ASPs can help
recognize similar patterns.

•	 IoT patterns are often variations of more general pat-
terns. When classifying IoT patterns, ASPs help to
establish the difference between ASPs and IoT pat-
terns, and we can concentrate in finding the changes
needed in the pattern description due to the specific
environment without having to redefine its core
structure, as we have shown in some examples (Fer-
nandez et al. 2020). This helps also with the problem
of the variety of IoT pattern descriptions found in the
literature (Washizaki et al. 2021).

•	 Several methodologies that claim to apply “security
by design”, e.g., Microsoft Security Development Life-
cycle (Howard 2006), start from the system architec-
ture, ignoring threats to applications. ASPs empha-
size the need to start earlier to consider the needs of
applications; this will result in more secure systems
because methods that start from lower levels ignore
higher-level threats.

•	 The forces in ASPs can become security policies for
the derived patterns, thus contributing to make them
more secure.

•	 ASPs can simplify the job of the designer who has
now a guide to decide what security mechanisms are
needed according to the possible threats and what

Page 15 of 17Fernandez et al. Cybersecurity (2022) 5:7 	

specific concrete patterns to use. In this sense, they
can effectively complement a secure development
methodology (Fernandez 2013; Uzunov et al. 2015b).

•	 An advantage of standard patterns, and also of
ASPs, is that they are seamless with respect to life-
cycle approaches such as the rational unified process
(RUP) (Rumbaugh et al. 1999), and use similar nota-
tion and concepts, which facilitate their use in prac-
tice.

•	 Security usability patterns can complement ASPs
by defining interface requirements to make patterns
clearer and easier to use; ASPs can be combined with
interface patterns (Brambilla et al. 2017).

•	 We have used ASPs in our own research. In (Fernan-
dez et al. 2021, Washizaki et al. 2021), ASPs provided
a convenient way to classify IoT patterns; in (Uzunov
et al. 2015b), they are used to embody a subset of
the early security requirements in a secure software
development methodology; in (Villagran-Velasco
et al. 2020) they were used to evaluate the degree of
security reached by a secure software methodology
using patterns.

Related work and discussion
As indicated earlier, the concept of abstract pattern is
present in the original patterns of the GOF (Gamma et al.
1994), but they did not develop their possibilities because
they were not concerned with the analysis stage, they
were trying to improve code.

Other varieties of security patterns intended to empha-
size abstract properties include:

•	 Jackson’s Problem Frames (Jackson 2001), have been
used to define patterns for security requirements
(Hatebur et al. 2007).

•	 Mouratidis uses Secure Tropos, an approach to sup-
port multiple views of security, including organiza-
tional and external aspects (Mouratidis et al. 2006).

The approaches based on problem frames have in com-
mon with ASPs that they emphasize the core security
requirements of the system. However, their patterns use
a totally different style, they do not follow the standard
pattern structure and use different concepts and nota-
tion. As indicated, an important advantage of standard
patterns and also of ASPs is that they are seamless with
respect to lifecycle approaches such as the rational uni-
fied process (RUP) (Rumbaugh et al. 1999), and use simi-
lar notation and concepts, which facilitate their use in
practice.

The patterns in (Moral-García et al. 2014) describe
enterprise activities and their security constraints and

thus they can also express application constraints. ASPs
are more detailed than those patterns and are very
close in style to standard patterns as those in (Fernan-
dez 2013, Gamma et al. 1994); after defining them in
the analysis stage their transition to design is straight-
forward: the design stage just needs to refine them and
express them in terms of software artifacts, something
not easy to do with patterns using different styles.

Conclusions and future work
We have elaborated and characterized the concept
of ASP, introduced by us in earlier work (Fernandez
et al. 2008, 2014). We have shown their possible uses
to prove that they have several potential advantages,
including providing insight into the nature of security
patterns, helping define the early stages of a method-
ology to build secure systems, for pattern mining, and
to build SRAs, among others (Fernandez 2015). To real-
ize their advantages, we need a good catalog of ASPs
that can be used by designers to define secure concep-
tual models that address crosscutting concerns. We
already have a good number of ASPs, but we need to
collect them in a specialized catalog of SSFs organ-
ized according to ASPs; this catalog would be useful to
help designers satisfy security requirements. This is an
important future work.

As indicated earlier, there is no automatic way to build
ASPs. It takes experience and abstraction ability to build
them. Pattern builders build catalogs and designers use the
catalogs to build systems. We have shown two formaliza-
tions of ASPs, but specific applications and extensions of
this formalization are left for future work. Combining ASPs
with SSFs and with a systematic methodology such as ASE
(Uzunov et al. 2015b) we believe we have a powerful tool to
build secure applications. We have started exploring their
use to build IoT applications (Fernandez et al. 2021).

Acknowledgements
We thank the National Institute of Informatics (NII) of Japan for supporting the
visits of E. B. Fernandez and J. Yoder to Tokyo. The CIbSE 2014 and the Cyberse-
curity referees provided useful comments that helped improve this paper.

Authors’ contributions
EF proposed the main idea, wrote the paper, and supervised the structure of
the paper. NY provided ideas, made corrections, and organized discussion
meetings. HW provided ideas, references, and helped with the formalization.
JY proofread the paper. All the authors participated in discussions to define
and refine the results of the paper. All the authors have read and approved of
this content.

Funding
This work received no external funding, but the National Institute of Informat-
ics of Japan funded the trip of the first and fourth authors to Tokyo to partici-
pate in meetings where the idea of this paper was developed.

Availability of data and materials
Not applicable.

Page 16 of 17Fernandez et al. Cybersecurity (2022) 5:7

Declarations

Competing interests
The authors declare no competing interests.

Author details
1 Department of Electrical Engineering and Computer Science, Florida Atlantic
University, Boca Raton, FL, USA. 2 GRACE Center, National Institute of Informat-
ics, Tokyo, Japan. 3 Waseda University, Tokyo, Japan. 4 The Refactory, Inc, Urbana,
IL, USA.

Received: 22 July 2021 Accepted: 6 January 2022

References
Avgeriou P (2003) Describing, instantiating and evaluating a reference archi-

tecture: a case study. Enterp Archit J 342:1–24
Blakeley B, Heath C (2004) Members of the open group security forum: techni-

cal guide: security design patterns. The Open Group, London http://​
www.​openg​roup.​org/​books​tore/​catal​og/​g031.​htm.

Brambilla M et al (2017) “Model-driven development of user interfaces for IoT
systems via domain-specific components and patterns. J Internet Serv
Appl 8(1):1–21

Buschmann F, Meunier R, Rohnert H, Sommerland P, Stal M (1996) Pattern- ori-
ented software architecture. Wiley, New York

Dong J, Alencar P, Cowan D (2007) Formal specification and verification of
design patterns, chapter 5. In: Taibi T (ed.) Design pattern formalization
techniques. IGI Publishing, pp 94–108

Fernandez EB (2013) Security patterns in practice: building secure architec-
tures using software patterns. Wiley series on software design patterns.
Wiley, New York

Fernandez EB, Yoshioka N (2018) Using a variety of patterns in a secure
software development methodology. In: Proceedings 25th Asia-Pacific
software engineering conference, Nara, Japan

Fernandez EB, Washizaki H, Yoshioka N (2008) Abstract security patterns. In:
Position paper in Proceedings of the 2nd workshop on software patterns
and quality (SPAQu’08), in conjunction with the 15th conference on pat-
tern languages of programs (PLoP 2008), October 18–20, Nashville, TN

Fernandez EB, Mujica S, Valenzuela f (2011) Two security patterns: least privi-
lege and security logger/auditor. In: Proceedings of Asian PLoP. http://​
patte​rns-​wg.​fuka.​info.​waseda.​ac.​jp/​asian​plop/​proce​eding​s2011/​asian​
plop2​011_​submi​ssion_7.​pdf

Fernandez EB, Yoshioka N, Washizaki H, Yoder J (2014) Abstract security pat-
terns for requirements specification and analysis of secure systems. In:
Proceedings of the WER 2014 conference, a track of the 17th Ibero-Amer-
ican conference on software engineering (CIbSE 2014), Pucon, Chile

Fernandez EB, Monge R, Hashizume K (2015) Building a security reference
architecture for cloud systems. Requir Eng. https://​doi.​org/​10.​1007/​
s00766-​014-​0218-7

Fernandez EB, Washizaki H, Yoshioka N (2016) Patterns for secure cloud IaaS. In:
5th Asian conference on pattern languages of programs (AsianPLoP)

Fernandez EB, Yoshioka N, Washizaki H (2018) An abstract security pattern for
Authentication and a derived concrete pattern, the Credential-based
Authentication. In: Asian pattern languages of programs conference
(AsianPLoP)

Fernandez EB, Yoshioka N, Washizaki H (2019) Abstract and IoT security pat-
terns for network segmentation. In: Proceedings of the 8th Asian confer-
ence on pattern languages of programs (Asian PLoP)

Fernandez EB, Yoshioka N, Washizaki H (2020) Secure distributed publish/sub-
scribe (P/S) pattern for IoT. AsianPLoP

Fernandez EB, Washizaki H, Yoshioka N, Okubo T (2021) The design of secure
IoT applications using patterns: State of the art and directions for
research. Internet Things 15:100408. https://​doi.​org/​10.​1016/j.​iot.​2021.​
100408

Fowler M (1997) Analysis patterns—reusable object models. Addison-Wesley,
Reading

Gamma E, Helm R, Johnson R, Vlissides J (1994) Design patterns—elements of
reusable object-oriented software. Addison-Wesley, Reading

Gollmann D (2011) Computer security, 3rd edn. Wiley, New York
Hamid B, Gürgens S, Fuchs A (2016) Security patterns modeling and formaliza-

tion for pattern-based development of secure software systems. Innov
Syst Softw Eng 12:109–140. https://​doi.​org/​10.​1007/​s11334-​015-​0259-1

Hatebur D, Heisel M, Schmidt H (2007) A pattern system for security require-
ments engineering. In: Proceedings of ARES, pp 356–365

Howard M (2006) The security development lifecycle: SDL: a process for
developing demonstrably more secure software, 1st edn. Microsoft Press,
Redmond

Jackson M (2001) Problem frames: analyzing & structuring software develop-
ment problems. Addison-Wesley, Reading

Le Guennec A, Sunyé G, Jézéquel J-M (2000) Precise modeling of design pat-
terns. In: International conference on the unified modeling language, pp
482–496

Maña A, Fernandez EB, Ruiz J, Rudolph C (2013) Towards computer-based
security patterns. In: 20th Conference on pattern languages of programs
(PLoP)

Moral-García S, Moral-Rubio S, Rosado DG, Fernández EB, Fernández-Medina
E (2014) Enterprise security pattern: a new type of security pattern. Secur
Commun Netw (wiley) 7(11):1670–1690. https://​doi.​org/​10.​1002/​sec.​863

Morrison P, Fernandez EB (2006) The credential pattern. In: Proceedings of the
conference on pattern languages of programs, PLoP 2006, Portland, OR.
http://​hills​ide.​net/​plop/​2006/

Mouratidis H, Weiss M, Georgini P (2006) Modelling secure systems using an
agent-oriented approach and security patterns. Int J Soft Eng Knowl Eng
16(3):471–498

Pereira-Vale A, Fernandez EB (2019) An ontology for security patterns. In: 38th
International conference of the chilean computer science society (SCCC
2019), Concepción—Chile. November 4–8

Polya G (1957) How to solve it, 2nd edn. Doubleday Anchor Books, New York
Priebe T, Fernandez EB, Mehlau JI, Pernul G (2004) A pattern system for access

control. In: Research directions in data and applications security XVIII,
Farkas C, Samarati P (Eds.) Proceedings of the 18th annual IFIP WG 11.3
working conference on da-ta and applications security, Sitges, Spain, July
25–28

Rumbaugh J, Jacobson I, Booch G (1999) The unified modeling language refer-
ence manual. Addison-Wesley, Boston

Saltzer J, Schroeder M (1975) The protection of information in computer
systems. Proc IEEE 63(9):1278–1308

Schumacher M, Fernandez EB, Hybertson D, Buschmann F, Sommerlad P
(2006) Security patterns: integrating security and systems engineering.
Wiley, New York

Song Z, Li Z, Dou W (2003) Different approaches for the formal defini-
tion of authentication property. In: 9th Asia-Pacific conference on
communications

Steel C, Nagappan R, Lai R (2005) Core security patterns: best strategies for
J2EE, web services, and identity management. Prentice Hall, Upper Sad-
dle River

Taylor RN, Medvidovic N, Dashofy N (2010) Software architecture: foundation,
theory, and practice. Wiley, New York

Uzunov AV, Fernandez EB (2021) Cryptography-based security patterns and
security solution frames for networked and distributed systems. Submit-
ted for publication (available from the authors)

Uzunov A, Fernandez EB, Falkner K (2015a) Security solution frames and
security patterns for authorization in distributed, collaborative systems.
Comput Secur 55:193–234. https://​doi.​org/​10.​1016/j.​cose.​2015.​08.​003

Uzunov A, Fernandez EB, Falkner K (2015b) ASE: a comprehensive pattern-
driven security methodology for distributed systems. J Comput Stand
Interfaces 41:112–137. https://​doi.​org/​10.​1016/j.​csi.​2015.​02

van Heesch U, Hezavehi SM, Avgeriou P (2011) Combining architectural pat-
terns and software technologies in one design language. In: Proceedings
of the 16th European conference on pattern languages of programs
(EuroPLoP)

Villagran-Velasco O, Fernandez EB, Ortega-Arjona J (2020) Refining the evalua-
tion of the degree of security of a system built using security patterns. In:
Proceedings 15th international conference on availability, reliability and
security (ARES 2020), Dublin, Ireland

Warmer J, Kleppe A (2003) The object constraint language, 2nd edn. Addison-
Wesley, Reading

Washizaki H, Fernandez EB, Maruyama K, Kubo A, Yoshioka N (2009a)
Improving the classification of security patterns. In: Proceedings 20th

http://www.opengroup.org/bookstore/catalog/g031.htm
http://www.opengroup.org/bookstore/catalog/g031.htm
http://patterns-wg.fuka.info.waseda.ac.jp/asianplop/proceedings2011/asianplop2011_submission_7.pdf
http://patterns-wg.fuka.info.waseda.ac.jp/asianplop/proceedings2011/asianplop2011_submission_7.pdf
http://patterns-wg.fuka.info.waseda.ac.jp/asianplop/proceedings2011/asianplop2011_submission_7.pdf
https://doi.org/10.1007/s00766-014-0218-7
https://doi.org/10.1007/s00766-014-0218-7
https://doi.org/10.1016/j.iot.2021.100408
https://doi.org/10.1016/j.iot.2021.100408
https://doi.org/10.1007/s11334-015-0259-1
https://doi.org/10.1002/sec.863
http://hillside.net/plop/2006/
https://doi.org/10.1016/j.cose.2015.08.003
https://doi.org/10.1016/j.csi.2015.02

Page 17 of 17Fernandez et al. Cybersecurity (2022) 5:7 	

international workshop on database and expert systems application, pp
165–170

Washizaki H, Fernandez EB, Maruyama K, Kubo A, Yoshioka N (2009b) Improv-
ing the classification of security patterns. In: 20th International workshop
on database and expert systems application, pp 165–170

Washizaki H, Hazeyama A, Okubo T, Kanuka H, Ogata S, Yoshioka N (2021)
Analysis of IoT pattern descriptions. In: SERP4IoT

Yoder J, Barcalow J (2000) Architectural patterns for enabling application
security. In: Harrison N, Foote B, Rohnert H (eds.) Proceedings PLOP’97,
Also, Chapter 15 in pattern languages of program design, vol 4.
Addison-Wesley

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

	Abstract security patterns and the design of secure systems
	Abstract
	Introduction
	Security patterns and security solution frames
	Abstract security patterns (ASPs)
	ASP-based hierarchies
	Relationships between ASPs and security solution frames
	ASPs in secure conceptual models
	Deriving concrete patterns from ASPs
	Formalization of ASPs
	Evaluation of effectiveness
	Related work and discussion
	Conclusions and future work
	Acknowledgements
	References

