Table 4 Partial encryption and decryption on 25-round LBlock

Step Guess Time Obtained States Size
1 $$K_{25}^{6}, K_{25}^{7}$$ N·218·10 $$x_{1}(x'_{1})=X_{0}^{0}\left |X_{0}^{14}\right | X_{0}^{5}\left |X_{0}^{9}\right | X_{0}^{6}\left |X_{0}^{1}\right | X_{0}^{8} | X_{0}^{4}$$ 260·2
$$K_{23}^{2}[2:3]$$   $$X_{25}^{3}\left |X_{25}^{10}\right | X_{25}^{13}\left |X_{23}^{7}\right | X_{25}^{6}\left |X_{25}^{12}\right | X_{21}^{5}$$
$$K_{24}^{1}, K_{25}^{3}$$
2 $$K_{1}^{4}$$ 260·218+4·2 $$x_{2}\left (x_{2}^{\prime }\right)=X_{0}^{0}\left |X_{0}^{14}\right | X_{0}^{5}\left |X_{0}^{9}\right | X_{0}^{6}\left |X_{0}^{1}\right | X_{1}^{6} |$$ 256·2
$$X_{25}^{3}\left |X_{25}^{10}\right | X_{25}^{13}\left |X_{23}^{7}\right | X_{25}^{6}\left |X_{25}^{12}\right | X_{21}^{5}$$
3 $$K_{2}^{6}$$ 256·222+4·2 $$x_{3}\left (x_{3}^{\prime }\right)=X_{0}^{0}\left |X_{0}^{14}\right | X_{0}^{5}\left |X_{0}^{9}\right | X_{0}^{6}\left |X_{2}^{7}\right | X_{25}^{3} |$$ 252·2
$$X_{25}^{10}\left |X_{25}^{13}\right | X_{23}^{7}\left |X_{25}^{6}\right | X_{25}^{12} | X_{21}^{5}$$
4 $$K_{24}^{7}$$ 252·226+3·2 $$x_{4}\left (x_{4}^{\prime }\right)=X_{0}^{0}\left |X_{0}^{14}\right | X_{0}^{5}\left |X_{0}^{9}\right | X_{0}^{6}\left |X_{2}^{7}\right | X_{25}^{3} |$$ 248·2
23 possible values   $$X_{25}^{10}\left |X_{22}^{7}\right | X_{25}^{6}\left |X_{25}^{12}\right | X_{21}^{5}$$
5 $$K_{1}^{6}$$ 248·229+4·2 $$x_{5}\left (x_{5}^{\prime }\right)=X_{0}^{0}\left |X_{0}^{14}\right | X_{0}^{5}\left |X_{1}^{7}\right | X_{2}^{7}\left |X_{25}^{3}\right | X_{25}^{10} |$$ 244·2
$$X_{22}^{7}\left |X_{25}^{6}\right | X_{25}^{12} | X_{21}^{5}$$
6 $$K_{3}^{7}$$ 244·233+1·2 $$x_{6}\left (x_{6}^{\prime }\right)=X_{0}^{0}\left |X_{0}^{14}\right | X_{0}^{5}\left |X_{3}^{5}\right | X_{25}^{3}\left |X_{25}^{10}\right | X_{22}^{7} |$$ 240·2
2 possible values   $$X_{25}^{6}\left |X_{25}^{12}\right | X_{21}^{5}$$
7 $$K_{25}^{4}$$ 240·234+4·2 $$x_{7}\left (x_{7}^{\prime }\right)=X_{0}^{0}\left |X_{0}^{14}\right | X_{0}^{5}\left |X_{3}^{5}\right | X_{25}^{3}\left |X_{25}^{10}\right | X_{22}^{7} |$$ 236·2
$$X_{23}^{0} | X_{21}^{5}$$
8 $$K_{24}^{0}\left (K_{22}^{5}\right)$$ 236·238+4·4 $$x_{8}\left (x_{8}^{\prime }\right)=X_{0}^{0}\left |X_{0}^{14}\right | X_{0}^{5}\left |X_{3}^{5}\right | X_{25}^{3}\left |X_{25}^{10}\right | X_{22}^{7} |$$ 232·2
$$X_{20}^{6}$$
9 $$K_{25}^{2}$$ 232·242+3·2 $$x_{9}\left (x_{9}^{\prime }\right)=X_{0}^{0}\left |X_{0}^{14}\right | X_{0}^{5}\left |X_{3}^{5}\right | X_{23}^{5}\left |X_{22}^{7}\right | X_{20}^{6}$$ 228·2
23 possible values
10 $$K_{23}^{7}[0]$$ 228·245+1·2 $$x_{10}\left (x_{10}^{\prime }\right)=X_{0}^{0}\left |X_{0}^{14}\right | X_{0}^{5}\left |X_{3}^{5}\right | X_{21}^{7} | X_{20}^{6}$$ 224·2
11 $$K_{1}^{5}$$ 224·246+4·2 $$x_{11}\left (x_{11}^{\prime }\right)=X_{0}^{0}\left |X_{1}^{4}\right | X_{3}^{5}\left |X_{21}^{7}\right | X_{20}^{6}$$ 220·2
12 $$K_{2}^{4}$$ 220·250+4·2 $$x_{12}\left (x_{12}^{\prime }\right)=X_{3}^{14}\left |X_{3}^{5}\right | X_{21}^{7} | X_{20}^{6}$$ 216·2
13 $$K_{4}^{5}[1]$$ 216·254+1·2 $$x_{13}\left (x_{13}^{\prime }\right)=X_{4}^{4}\left |X_{21}^{7}\right | X_{20}^{6}$$ 212·2
14 $$K_{21}^{6}$$ 212·255+4·2 $$x_{14}\left (x_{14}^{\prime }\right)=X_{4}^{4} | X_{20}^{9}$$ 28·2