Skip to main content

Table 2 Summary of optimization techniques of different anomaly detection models using AI

From: Quantized autoencoder (QAE) intrusion detection system for anomaly detection in resource-constrained IoT devices using RT-IoT2022 dataset

Methods/references

Learning model

Security threat

Optimization method

Applied to IDS

Dataset of cyber attacks

Remarks

SAAE-DNN (Tang et al. 2020)

Stacked autoencoder

DoS, Probe, R2L and U2R

Attention vectors

\(\checkmark\)

NSL-KDD

Limited to simulation

Passban (Eskandari et al. 2020)

IF, LOF

Port scan, SYS flood, HTTP and SSH brute-force

\(\times\)

\(\times\)

\(\times\)

High CPU 47.17%

VecQ (Gong et al. 2020)

DNN

\(\times\)

Quantization

\(\times\)

\(\times\)

Not applied for IDS

Hybrid deep learning technique (Popoola et al. 2020)

LAE, BLSTM

Mirai, BASHLITE

\(\times\)

\(\times\)

N_BaIoT

High false alarm rate to correlate TCP and SCAN attacks

PSO + DT, PSO_KNN (Ogundokun et al. 2021)

DT KNN 

DoS, Probe, R2L and U2R

Particle swarm

\(\checkmark\)

KDDCUP99

Limited to simulation

AS-IDS (Otoum and Nayak 2021)

DNN

DoS, Probe, R2L and U2R

Q-Learning

\(\checkmark\)

NSL-KDD

Limited to simulation

OPQ (Hu et al. 2021)

DNN

\(\times\)

Pruning quantization

\(\times\)

\(\times\)

Not applied for IDS

HNADAM-SDG (Shyla et al. 2022) 

Regression

DoS and information theft

Hyper parameters

\(\checkmark\)

UNSW-NB15

Performance depend on hyperparameters and type of dataset

Deep learning models (Saba et al. 2022)

CNN

DoS, DDoS, reconnaissance

\(\times\)  

\(\checkmark\)

NID and BoT-IoT

CNN is too complex for IoT devices

Quantized autoencoder (QAE-u8, QAE-f16)

Autoencoder

DDoS and SSH brute-force

Pruning, clustering and quantization

\({\checkmark }\)

RT-IoT2022

Proposed method